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Abstract: Due to its great variety of applications, the problem about finding packings of segments attracted our attention. In this paper the problem is investigated and reduced to finding submatrix of a special kind via graph-theory interpretation (finding cliques in a graph). A new powerful algorithm is thus obtained, suitable for a lot of real-world problems (processor time sharing ,  timetables generating ,  etc.).
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1.
Introduction

In programming (both system and application) one can often come upon problems that are easily formulated in terms of finding a suitable packing of segments. Processor time sharing is a classical example (from system programming). Timetables generating is another problem (from application programming) with no general solution found yet.

The general packing problem is continual, but it can be reduced to the discrete variant; it is the last one that is discussed below. The relations between the segments of the discrete packing problem can be encoded in a graph thus reducing the problem to finding a clique in a graph (cf. [1], [2]).

Different approaches exist for finding cliques. One such solution is deduced from a previous investigation of ours on the assignment problem. This solution turns out most appropriate for the current discussion. An algorithm for packing segments is constructed on the basis of it. 

2.
Problem Formulation
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. When the equality holds, the problem is canonical.

Without loss of generality the big segment is [0; 
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]. Assume that the additional constraints are independent, that is, they have the form 
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. The packing problem is discrete, if 
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The discrete problem is the only variant to be discussed here, since the general case can be reduced to it.
3.
Problem Solution

The input can be encoded as a binary matrix A with 
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 from bottom to top) and  k  columns (№1 – № k from left to right): the element in the j‑th row and i‑th column is 1, if j( M i , and 0 otherwise. (Since lengths are positive, the top 
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 cells of the i‑th column can be converted to 0s, if they are not, and the 
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‑th row of A can be safely omitted.) Then a packing corresponds to a  k‑tuple of 1s from different columns, such that
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where 
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 is the index of the row of the one, taken from the i‑th column. (If the conversion of the top cells has taken place, then (2) can be omitted.)

3.1.
Graph-theory interpretation

Consider an unoriented graph G, whose vertices correspond to the 1s of the matrix A (after conversion of the top cells); two vertices are connected, only if their 1s can take part in a packing, that is, they are from different columns (say, i1 and i2) and 
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 are their rows. Then a packing (of some m segments) corresponds to an m‑clique in G and a solution (a packing of all k segments) corresponds to a k-clique. Obviously, G is a k‑partite graph and cl(G) ( k. So we need an algorithm for finding where cl(G) = k and if so, a k‑clique must be found too (if cl(G) < k, the exact value of cl(G) is of no interest to us).

Finding cliques is NP‑complete. Fortunately, there still exist algorithms whose average running-time (not the worst-case one!) is good enough for the most cases met in practice.

3.2.
Cliques and binary matrices

Let G = (V, E ) be an unoriented graph with n vertices, V = {v1 , v2 , ... , vn}, B be an n x n binary matrix defined in the following way: the element in its i‑th column and j‑th row is 1, if i ( j and v i is not connected to v j; otherwise it is 0. A submatrix of B is symmetrically positioned in B, if the sets of indices of its rows and its columns coincide (so it must be a square matrix). Their common value defines a subset of V; moreover, the correspondence “a subset of V ( a symmetrically positioned submatrix of B ” is one-to-one.

A symmetrically positioned submatrix, whose elements are all 0s, will be called a clique square. If a subset of V is a clique, then its corresponding submatrix of B is a clique square and vice versa. So finding cliques in the graph G is equivalent to finding clique squares in the matrix B.

3.3.
Searching for clique squares

The problem now sounds like this: given a symmetric binary n x n matrix B and an integer k (where 1 ( k ( n), find in B a clique square of size k (if it exists). 

In our investigation [3] on the assignment problem we have designed an algorithm that solves a similar problem: given a binary n x n matrix and an integer g (where 1 ( g ( 2n), find a submatrix of 0s, such that the sum of its width and height is equal to g. A recursive algorithm is proposed in [3] (in fact, [3] does not contain an explicit formulation of the algorithm, but the theorems managing different cases are ordered in the same way as the checks of the algorithm); its average running-time is shown below:

	Size of the matrix
	Average time (sec.)

	 500
	0.078

	1000
	0.297

	1500
	0.628

	2000
	1.261

	2500
	1.940

	3000
	2.496

	3500
	3.889

	4000
	5.275


Table 1. Running-time of the algorithm from [3].

Remark: The computer tests in [3] have been run on Celeron 366 MHz, 32 MB RAM.

The average running-time seems to be O( n 2 ), where n is the size of the matrix.

We would like to apply this algorithm to our new problem. The only difference is that now the submatrix must be symmetrically positioned. This additional requirement needs some modification of the algorithm.

3.3.1.
Algorithm for finding clique squares 

We use Pascal-like pseudocode for describing the algorithm. The symbols ‘{‘ and ‘}’ mean a set and not a comment. A symmetrically positioned submatrix (including a clique square) is encoded as a set of integers – the set of indices of its rows (and columns). An empty set means that no clique square has been found.

function FindCliqueSquareInMatrix(

  n: integer; // size of the matrix B

  B: matrix; // symmetric binary matrix

  k: integer // size of a clique square

): set of integers; // the clique square

begin

  Result := 

    FindCliqueSquareInSubmatrix(

      n, B, {1,2,...,n}, k, true

    );

end;

The function FindCliqueSquareInMatrix merely calls another, more general function which has additional parameters. We need this generalization, because the algorithm is recursive: at some stage it makes a call to itself about a smaller matrix (which is a submatrix of the given one – cf. below).

function FindCliqueSquareInSubmatrix(
  n: integer; // size of the matrix B

  B: matrix; // symmetric binary matrix

  M: set of integers; // symmetrically 

                // positioned submatrix 

  k: integer; // size of a clique square

  bad0to1: boolean // flag for ″bad″ 0s

): set of integers; // the clique square

var i: integer;

begin

  Result := {};

  for i(M do begin

    if B[i, i] = 0 then begin

      Result := CliqueSquarePos(n,B,M,k,i);

      if Result <> {} then

        break

      else begin

        if bad0to1 then begin

          for j(M do begin

            B[i, j] := 1;

            B[j, i] := 1;

          end;

        end;

      end;

    end;

  end;

end;

The routine FindCliqueSquareInSubmatrix explores each zero on the main diagonal of the submatrix and tries to find a clique square containing it. On success it returns the found clique square. On failure it replaces this zero with a one, if it had been told so (this happens only at the top level of the recursion).

function CliqueSquarePos (

  n: integer; // size of the matrix B

  B: matrix; // symmetric binary matrix

  M: set of integers; // symmetrically

                // positioned submatrix

  k: integer; // size of a clique square

  p: integer // position

): set of integers; // the clique square

var 

  MaxSquare, MinSquare: set of integers;

begin

  MaxSquare := GetMaxSq(n, B, M, p);

  if (MaxSquare( < k then

    Result := {}

  else begin

    MinSquare := GetMinSq(n, B, MaxSquare);

    if (MinSquare( ( k then // found 

      Result := 

        the set consisting of the

        first k elements of MinSquare

    else // recursive search

      Result := 

        FindCliqueSquareInSubmatrix(

          n, B, MaxSquare \ MinSquare, 

          k - (MinSquare(, false

        );

      if Result <> {} then

        Result := MinSquare ( Result;

  end;

end;

The routine CliqueSquarePos looks in a submatrix (defined by the set M ) of the matrix B for a clique square of size k containing the p‑th element in the main diagonal of B. The function does so by calculating the maximal and minimal squares. Maximal square of a position p is the submatrix consisting of those rows and columns of B, whose p‑th elements are 0s. Minimal square of a position p is the submatrix of its maximal square consisting of those rows and columns of its that contain only 0s. Since B is a symmetric matrix, maximal and minimal squares are symmetrically positioned.

function GetMaxSq(

  n: integer; // size of the matrix B

  B: matrix; // symmetric binary matrix

  M: set of integers; // symmetrically

                // positioned submatrix

  p: integer // position

): set of integers; // maximal square

var

  j: integer; // row index

begin

  Result := {};

  for j(M do begin

    if B[j, p] = 0 then 

      Result := Result ( {j};

  end;

end;

function GetMinSq(

  n: integer; // size of the matrix B

  B: matrix; // symmetric binary matrix

  M: set of integers // maximal square

): set of integers; // minimal square

var

  i: integer; // column index 

  j: integer; // row index

  flag: boolean; // a row (column) of zeros

begin

  Result := {};

  for j(M do begin

    flag := true;

    for i(M do begin

      if B[j, i] = 1 then begin 

        flag := false;

        break;

      end;

    end;

    if flag then

      Result := Result ( {j};

  end;

end;

Obviously, any clique square, containing the p‑th element on the main diagonal of B, is a part of the maximal square (which itself is not necessarily a clique square). On the other hand, the minimal square is a clique square containing the p‑th element. If its size (MinSquare( is equal to or larger than k, then a suitable clique square is found. Otherwise the searched clique square (if it exists) must have at least r = k – (MinSquare( of the remaining rows and columns of the maximal square. And vice versa, any such clique square of size r can be extended (using the rows and columns of the minimal square) to a clique square of size k. So the recursive call in the last instruction of the function CliqueSquarePos is really what we need in order to find the appropriate clique square.

Converting ‘bad’ 0s to 1s is not necessary for the correctness of the algorithm, but it is a very good optimization. Indeed, if a zero is proved to not participating in a clique square, then converting this zero to a one will not destroy any clique square, but will prevent us from exploring again the same zero (in subsequent recursive calls). And converting one ‘bad’ zero usually causes more conversions, especially if the matrix is ‘on the edge’, that is, it does not have a clique square of size k, but it ‘almost has’ such a square (for example, it has a clique square of size k – 1). Since these cases are the most difficult for the algorithm (they need a precise estimation), the optimization is really quite useful.

3.3.2.
Experimental results for the algorithm for finding clique squares 

This algorithm has been implemented and tested about running-time (tests have been run on Celeron 366 MHz, 64 MB RAM). It turns out that for n = 1000 the maximal and average time are about 200 ms, resp. 100 ms, when there is a clique square; but when there is not a clique square, the average time is about 400 ms and the maximal time (the worst case) is some minutes!

The problem can be easily overcome, if heuristic algorithms are accepted. A higher, monitoring level must be implemented in the algorithm; its task will be to watch for the running-time. If the low level (the proposed algorithm) consumes too much time, it must be interrupted and negative answer (‘clique square not found’) returned to the caller. The modified algorithm that consists of two levels united by a common goal will be called a reflexive or self-monitoring algorithm.

A series of experiments have been made on the last variant of the algorithm. Thousand and hundred matrices have been tested for each size n: for each k = 0.1n, 0.2n, ... , 0.9n, n hundred and ten matrices have been tested (five matrices for each density from 0% to 100% step 10%), where k is the size of the clique square. (Density is the ratio of the count of the 1s to the count of all elements). Running-time limit has been set to 1000 ms; if this time is up, a negative result is returned.

	n
	Results percentages
	Maximal and average running-time (ms)

	
	found
	not found
	stopped
	found
	not found
	total

	
	
	
	
	maximal
	average
	maximal
	average
	maximal
	average

	  500
	9.1%
	65.3%
	25.6%
	  60
	    3
	990
	256
	2090
	445

	1000
	9.1%
	60.4%
	30.5%
	170
	  91
	990
	370
	1710
	558

	1500
	9.1%
	52.4%
	38.5%
	280
	181
	990
	751
	1640
	819

	2000
	9.1%
	13.8%
	77.1%
	440
	320
	990
	986
	1920
	984


Table 2. Running-time of the reflexive algorithm for finding clique squares.

The three kinds of results are: ‘found’ (a clique square has been found), ‘not found’ (a clique square does not exist), ‘stopped’ (the lower level of the algorithm has been interrupted).

Now the great difference between ‘found’ and ‘not found’ cases is apparent: the average time of ‘found’ cases is much smaller than the average time of ‘not found’ cases.

Obviously, the value of 1000 ms for the running-time limit has been properly chosen: the maximal time of the ‘found’ cases is much smaller than the limit. In fact, the maximal time cannot be fully trusted: it must increase, if more tests are run. There is a good reason to believe that the maximal times of ‘found’ and ‘not found’ cases are actually equal! Indeed, the most difficult matrices are ‘on the edge’ and can be approached from both sides. However, if the actual maximal time of ‘found’ cases is really close to that of ‘not found’ cases, it is still very seldom consumed.

The fact that the total maximal time is greater than the running-time limit is easily explained: this limit is implemented through a timer and the Windows message WM_TIMER is of low priority. Moreover, its handler is executed in a different thread and it is not started immediately. When the message is finally handled, a termination flag is raised, the last recursive call returns a negative result (‘not found’) which propagates back through all levels of recursion. All these factors cause a constant extra ammount of time (a second or so) for the ‘stopped’ case.

The average running-time can be trusted much more than the maximal one. It supports the drawn conclusion: most matrices that have a clique square are processed quickly. Their percentage (9.1%) is quite stable and relatively small. The percentage of ‘stopped’ cases tends to grow, which is natural, because the running-time limit is fixed. For larger matrices it must be increased, however.

3.4.
Back to packings of segments

Now that we have an algorithm for finding clique squares (or cliques, equivalently), we can use it for solving the original problem. (Of course, we can use any other algorithm for cliques as well.)

3.4.1.
Algorithm for finding packings of segments 

The reduction of the problem has been described above. More formally:

function FindPackingOfSegments(

  k: integer;// count of the small segments

  (0: integer;// length of the big segment
 ((i)
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: sequence of integers;// lengths 

                   // of the small segments
  A: matrix // binary matrix (0 x k

): sequence of integers;// the packing

var

  n: integer;

 (rm)
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: sequence of integers;// rows

 (cm)
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m=1

: sequence of integers;// columns

  B: matrix;// binary matrix n x n

  m’, m”: integer;// indices

  elem: boolean;// current element of B

  ClSq: set of integers;// clique square

begin

  Result := empty sequence;

  n := count of 1s of A;

 (rm)
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m=1

 := row indices of 1s of A;
 (cm)
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 := column indices of 1s of A;

  for m’ := 1 to n do begin

    for m” := 1 to n do begin

      elem := not Can1sBeTogether(

       cm’ , cm” , rm’ , rm” , (m’ , (m”
      );

      // 0 = false; 1 = true 

      B[m’,m”] := elem;

      B[m”,m’] := elem;

    end;

  end;
  ClSq := FindCliqueSquareInMatrix(n,B,k);

  Result := 

    CliqueSquareToPacking(

      ClSq ,(rm)
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    );
end;

The routine FindPackingOfSegments accepts the input data (binary matrix A with 
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 rows and k columns as well as a sequence 
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), then constructs the matrix B as described above and searches for a clique square of size k in B. On success it returns the sequence of rows of 1s of A that form a packing. On failure it returns an empty sequence.
function Can1sBeTogether(

  i1, i2: integer;// column indices

  j1, j2: integer;// row indices

  (1, (2: integer // lengths of segments

): boolean;

begin

  if i1 = i2 then
    Result := (j1 = j2)

  else

    Result := (j1 - j2)((-(1, (2)
end;

The function Can1sBeTogether checks whether two 1s of A can take part in the same packing. It returns true, when the two 1s coincide or when they are from different columns and the corresponding small segments do not overlap.

function CliqueSquareToPacking(

  ClSq: set of integers;// clique square

 (rm)
[image: image43.wmf]n

m=1

: sequence of integers;// rows

 (cm)
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m=1

: sequence of integers // columns

): sequence of integers;// the packing

var 

 (mi)
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: sequence of integers;  

begin

  if ClSq = {} then
    Result := empty sequence

  else begin

   (mi)
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 := the sequence of the elements 

              of ClSq ordered in such a way

              that 
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  end;

end;
The function CliqueSquareToPacking translates solution back to the original formulation. Obtaining the sequence (m i)
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 requires some kind of sorting which can be avoided through carefully numbering the 1s of A and implementing sets.
3.4.2.
Experimental results for the algorithm for finding packings of segments 

The described algorithm has been implemented and tested about running-time (tests have been run on Celeron 366 MHz, 64 MB RAM). The parameter which affects the running-time most is n – the count of 1s of the matrix A.

450 matrices have been tested for each n: for each density ( from 10% to 90% step 10% fifty matrices with N = n / ( elements have been tested (five matrices tested for every pair < k, 
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; k = 0.1 * kmax , 0.2 * kmax , ... , kmax ; 
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= N / k). For each matrix the numbers 
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 are chosen at random in such a way that 
[image: image56.wmf]1

k

i

i

l

=

å

 ( 
[image: image57.wmf]0

l

. Running-time limit has been set to 10000 ms. The results are summarized in table 3. 

	n
	Results percentages
	Maximal and average running-time (ms)

	
	found
	not found
	stopped
	found
	not found
	total

	
	
	
	
	maximal
	average
	maximal
	average
	maximal
	average

	  500
	68.7%
	5.6%
	25.8%
	7800
	  785
	9990
	9990
	10060
	3681

	  600
	65.8%
	5.1%
	29.1%
	6100
	1089
	9990
	9990
	10060
	4148

	  700
	65.3%
	3.6%
	31.1%
	6920
	1519
	9990
	9990
	10060
	4469

	  800
	68.2%
	4.9%
	26.9%
	9290
	2058
	9990
	9990
	10060
	4591

	  900
	66.9%
	5.1%
	28.0%
	9230
	2414
	9990
	9990
	10060
	4935

	1000
	65.8%
	6.2%
	28.0%
	8080
	3033
	9990
	9990
	10060
	5428


Table 3. Running-time of the algorithm for finding packings of segments.

Most remarks about the algorithm for clique squares are valid here as well. The main difference between them is that the new algorithm is somewhat slower due to the additional processing of data. The percentage of ‘found’ cases here is much greater (and slowly decreases), because the matrices B, for which FindCliqueSquareInMatrix is called, are not uniformly distributed.

It is important to know the reliabilty of the algorithm, that is, the probability of correct answers.

	n
	Slow

found 

from all
	Slow not 

found 

from all
	Found 

from 

slow
	Positive

stopped

from all
	Reliabilty

	  500
	0.0%
	5.6%
	  0.0%
	0.0%
	100.0%

	  600
	0.0%
	5.1%
	  0.0%
	0.0%
	100.0%

	  700
	0.0%
	3.6%
	  0.0%
	0.0%
	100.0%

	  800
	0.4%
	4.9%
	  8.3%
	2.2%
	  97.8%

	  900
	0.2%
	5.1%
	  4.2%
	1.2%
	  98.8%

	1000
	0.0%
	6.2%
	  0.0%
	0.0%
	100.0%


Table 4. Reliabilty of the algorithm

for finding packings of segments.

A test case is slow if its running-time is between 90% and 100% of the running-time limit. ‘Slow (not) found from all’ – sfa (snfa) – is the percentage of ‘(not) found’ answers from all tests. ‘Found from slow’ – ffs – is the percentage of slow ‘found’ answers from all slow answers, that is, ffs = sfa / (sfa + snfa). Assume that it is equal to the percentage of tests that have a packing from all ‘stopped’ cases. ‘Positive stopped from all’ – psfa – is the percentage of ‘stopped’ cases that have a packing from all tests, psfa ( ffs * stopped. These are the wrong answers. All other answers are correct, that is, reliabilty = 1 – psfa. Reliabilty never falls below 97%.

4.
Conclusion

Classical searching techniques combined with self-monitoring enabled us to construct a fast and reliable algorithm for finding packings of segments. Its average time for big matrices is about 5 sec. and its reliabilty is above 97% which is enough for most cases met in practice.
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