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Abstract: - The operations number was evaluated for different design strategies to select the optimal or quasi-
optimal strategy that has the minimal computer time. The general methodology for the system design was 
elaborated by means of the optimal control theory approach. The problem of the time-optimal system design has 
been formulated as the classical problem of the optimal control for the some functional minimization. The 
principal equations of new design methodology were defined. These equations include the special control 
functions that are introduced to generalize the design process. The optimal behavior of the control functions 
serves as the kernel of the time-optimal design algorithm. 
 The preliminary structure of quasi-optimal design strategy was discussed. The trajectory stability was defined 
as the basic property for the time-optimal strategy selection. The positions  of the optimal switch points of the 
control vector were defined on the basis of the analysis of the special Lyapunov function of the design process.  
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1 Introduction 
The electronic system design by the traditional 
methodology includes the formulation of the 
principal equation system, the definition of the 
number of independent variables K and the number 
of dependent variables M and some type of 
optimization procedure use. The principal system of 
equations for the electronic circuit can be formulated 
as algebraic or integral-differential system. This 
system can be interpreted as the relations between 
independent and dependent variables. From the 
optimization problem point of view this system can 
be determined as the system of constraints for the 
cost function minimization.  
 On the other hand it is possible to use the idea of 
general optimization [1] for the electronic system 
design. On this way the independent variables vector 
includes arbitrary number of the systems components 
from K to K+M. In that case the cost function 
includes additional penalty terms that simulate the 
relation equations. This approach includes 2M 
different design strategies and serves as the source for 
the time-optimal strategy search. 
 The reformulation of the optimization process on 
heuristic level was proposed decades ago [2]. This 
process was named as generalized optimization and it 
consists of the Kirchhoff law ignoring for some parts 
of the system model. The special cost function is 

minimized instead of the circuit equation solve. This 
idea was developed in practical aspect for the 
microwave circuit optimization [3] and for the 
synthesis of high-performance analog circuits [4] in 
extremely case, when the total system model was 
eliminated. This design strategy can be named as the 
modif ied traditional design strategy and it is an 
alternative to de traditional design strategy. 
 Nevertheless all these ideas can be generalized to 
reduce the total computer design time for the system 
design. This generalization can be done on the basis 
of the control theory approach and includes the 
special control function to control the design process. 
This approach consists of the reformulation of the 
total design problem and generalization of it to obtain 
a set of different design strategies inside the same 
optimization procedure [5]. An additional 
acceleration effect [6] serves as the first principal 
component of the optimal algorithm construction. 
The next principle for the time-optimal algorithm 
construction is the problem of the optimal switch 
point search for the control functions switching.  
 
2 Operations Number Evaluation 
For the computer time comparison of different kinds 
of design strategy and for optimal algorithm 
elaboration it is necessary to evaluate the operations 
number. 



 By the general design strategy, in case when the 
number of independent parameters is variable and 
equal to   K+ Z   the following two systems are used: 
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In this case the total operations number N  for the 
solution of the systems  (1), (2)  can be evaluated as: 
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when the Newton's method is used for the sys tem (2) 
solution. Formula (3) gives the operations number for 
the traditional design strategy when Z=0 and for the 
modified traditional design strategy when Z=M. 
Sometimes the necessary operation number C  for the 
cost function C(X) calculation do not has dependency 
from the independent parameters number  K+Z,  but 
for the majority of electronic systems is in proportion 
to the sum K+Z ( ( )C c K Z= + ). Formula (3) in this 

case is transformed into following expression: 
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 An analysis of the operations number N as the 
function of Z by formula (4) gives us the conditions 
for the minimal computer time. In case when the 
system (2) is the linear one this general design 
strategy almost has no preference in computer time as 
shown in [1]. Formula (4) gives the optimum point  
Z opt  that is within the region (0, M) for the nonlinear 

system (2). 
 In more general case, when the system's model 
can be separate on two parts as linear and nonlinear  
we have the following systems: 
 
a) nonlinear part is given by : 
 

 ( )g Xj = 0  
( )j r M Y= −1 2, ,...,

     (5) 
 
b) linear part is given by: 
 
  A X  =  B 

where  [ ]r ∈ 0 1, ;   A and B  are  matrices  of  the 
order  ( ) ( )1 − ⋅ −r M Z . The formula for the 
operations number evaluation has the following form: 
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 The analysis of this formula shows that for the 
majority of the practice problems the optimum point 
of the function N(Y,Z) is within the domin ion. The 
optimum point (Yopt

,Z opt
) minimizes the necessary 

computer time for system design and has dependency 
from the electronic system size and topology. 
 The optimization of the space dimension number 
of independent parameters leads to reduction of the 
total operation number and therefore to reduction of 
the total computer time for electronic system design. 
The analysis of different types of electronic systems 
shows that the optimal space dimensions of 
independent parameters can reduce the total computer 
time to 100-500 times. In this work the problem of 
optimum order of the space dimension is solved by 
general approach on basis of optimal control theory.  
 
3 General Formulation 
The design process for any analog system design  can 
be defined [5] as the problem of the generalized cost 
function ( )UXF ,  minimization by means of the 
vector equation (7) with constrains (8): 
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where NRX ∈ , ( )XXX ′′′= , , KRX ∈′  is the vector of 

independent variables and the vector MRX ∈′′  is the 
vector of dependent variables ( MKN += ), ( )Xg j  

for all  j is the system model, s is the iterations 

number, st is the iteration parameter, 1Rts ∈ , 

H ≡ H(X,U) is the direction of the generalized cost 
function ( )UXF ,  decreasing, U is the vector of the 

special control functions ( )U u u um= 1 2, ,..., , where 

uj ∈Ω; { }Ω = 0 1; . The generalized objective function 

( )UXF ,  is defined as: ( ) ( ) ( )UXXCUXF ,, ψ+=  

where ( )XC  is the ordinary design process cost 
function, which achieves all design objects and 
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permits to redistribute the computer time expense 
between the problem (8) and the optimization 
procedure (7) for the function ( )UXF , . The control 

vector U is the main tool for the redistribution 
process in this case. Practically an infinite number of 
the different design strategies are produced because 
the vector U depends on the optimization current 
step. The problem of the optimal design  strategy 
search is formulated now as the typical problem for 
the functional minimization of the control theory. The 
functional that needs  to minimize is the total CPU 
time of the design process. This functional depends 
on the operation number and in gener al on the design 
trajectory that has been realized. The main problem is 
unknown optimal dependencies of all control 
functions uj . This problem is the central for such 

type of the design process definition. 
 

4 Optimal Trajectory Structure 
The idea of the system design problem definition as 
the problem of the control theory does not have 
dependency from the optimization method (the 
function H form) and can be embedded into any 
optimization procedure. The numerical results for the 
different electronic circuits show [5] that the optimal 
control vector optU  and the optimal trajectory optX  

exist and can reduce the total computer time 
significantly. This optimal trajectory is differed from 
the traditional desig n strategy ( Mjju , . . .2,1,0 =∀= ) and 

differed from the modified traditional design strategy 

( Mjju , . . .2,1,1 =∀= ), i.e. the idea, which was realized in 

[3] and [4] is not optimal from the computer time 
point of view. The main problem is to construc t the 
optimal algorithm, which permits to realize all 
advantage of the optimal strategy. The analysis of the 
different electronic systems gives the possibility to 
conclude that the potential computer time gain of the 
time-optimal design strategy relatively the traditional 
strategy increases when the size and complexity of 
the system increase [5].  

An additional acceleration effect of the design 
process was discovered [6] on the basis of the 
described methodology by means of the vector X start 
point variatio n. This effect appears for all analyzed 
circuits when al least one coordinate of the start point 
is negative and gives the possibility to reduce the 
total computer time additionally. This effect serves as 
the basis for the optimal algorithm construction in 

case when the sequence of the switch points of the 
control functions u j  is founded. So, the main 

problem to construct the optimal algorithm is the 
problem of the optimal switch point definition for all 
the control functions during the des ign process. 
 The analysis of some examples gives the 
possibility to conclude that the trajectories that appear 
for the different control vector U can be separated in 
two subsets. For example, the one plane trajectory 
projections, which correspond to the nonlinear circuit 
in Fig.1 and the different control vector U are shown 
in Fig. 2. These projections correspond to the plane 

34 Vy −   and the points S and F  correspond to the start 
and the final points of the design process. We can 
define the two subsets of the trajectories: 1) the 
trajectory projection, which corresponds to the 
traditional strategy  U=(000) and the like traditional 
strategy  projections (010), (100), (110) and 2) the 
trajectory projection, which corresponds to the 
modified traditional strategy (111) and the like 
modified traditional strategy projections (001), (011), 
(101). The main differences between two these 
groups are the different curve behavior and the 
different approach to the final point. The curves from 
two these groups draw to the final point from the 
opposite directions. The time-optimal algorithm has 
includes one or some switch points where the 
switching   is   realized   from    the    like     modified 
 

 
 

Fig. 1. Circuit with four independent (K=4) and 
three dependent (M=3) variables. 

 

 
Fig. 2. 34 Vy −  plane trajectory projections for 

different control vector U. 



traditional strategy to like traditional strategy with an 
additional adjusting. At least one negative component 
of the start value of the vector X is needed to realize 
the acceleration effect [6]. In this case the optimal 
trajectory can be constructed. 
 
5 Design Trajectory Stability 
Acceleration effect serves as the basis for the optimal 
algorithm construction when the sequence of the 
switch points of the control functions u j  is found. So, 

the main problem to construct the optimal algorithm 
is the problem of the optimal switch point of the 
control functions searching during the design process. 
 To obtain the optimal sequence of the switch 
points during the design process, we need to define a 
special criterion that permits to find the optimal 
control vector U. The problem of the minimal time 
strategy searching is connected with the more general 
problem of the stability of eac h design trajectory. 
Total design time depends on characteristics of the 
design trajectories and first of all depends on the 
design trajectory convergence. However the 
convergence is the effect of the design trajectory 
stability. There is a well known idea to study of any 
dynamic process stability properties by means of the 
Lyapunov direct method. We have been defined the 
system design algorithm as the dynamic controllable 
process. In this case we can study the stability of each 
trajectory and the design process transit time 
properties on the basis of the Lyapunov direct 
method. We propose now to use a Lyapunov function 
of the design process for the optimal algorithm 
structure revelation, in particular for the optimal 
switch points searching. There is a freedom of the 
Lyapunov function choice because of a non-unique 
form of this function.  Let us define the Lyapunov 
function of the design process (7)-(8) by the 
following expression: 
 

 ( ) ( )∑ −=
i

ii axXV 2        (9) 

where ia  is the stationary value of the coordinate ix , 

in other words the set of all the coefficients ia  is the 

one of the objectives of the design process. Let us 
define other variables iii axy −= . In this case the 

formula (9) can be rewrit ten as: 
 

  ( ) ∑=
i
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The design process (7)-(8) can be rewritten by means 
of the variables iy  in the same form. The function 

(10) satisfies all of the conditions of the standard 
Lyapunov function definition. In fact the function 
V(Y) is the piecewise continue, and has piecewise-
continue first partial derivatives. Besides there are 
three characteristics of this function: i) V(Y) >0, ii) 
V(0)=0, and  iii) ( ) ∞→YV  when ∞→Y . In this 

case we can discuss the stability of the zero point 
solution. On the other hand, the stability of the point 
( )Naaa ,...,, 21  is analyzed by the definition (9). It is 
clear that the both problems are identical. 
Inconvenience of the formula (9) is an unknown point 
( )Naaa ,...,, 21 , because this point can be reached at 

the end of the design process only. We can analyze 
the stability of all different design strategies on the 
basis of the formula (9) if we already found the 
design solution someway. On the other hand, it is 
very important to control the stability process during 
the design procedure. In this case we need to 
construct other form of the Lyapunov function that 
doesn’t depend on the unknown stationary point. Let 
us define the Lyapunov function by the next formula: 
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where F(X,U) is the generalized cost function of the 
optimization procedure. This function has the same 
properties as the function (9) for the sufficiently large 
neighborhood of the stationary point. Really, all 
derivatives ixF ∂∂ /  are equal to zero in the stationary 

point  a = ( )Naaa ,...,, 21 , so V(a,U)=0, on the other 

hand V(X,U)>0 for all X and at last, the function V(X) 
of the formula (11) is the function of the vector U  
too, because all coordinates ix  are the functions of 
the control vector U. The property iii) is not proved 
only, because nobody know the function V(X,U) 
behavior when ∞→X . However we can 

consider, from the practical experience, that the 
function V(X,U) increases in a sufficient large 
neighborhood of the stationary point. The direct 
calculation of the Lyapunov function time derivative 
gives the conditions of the process stability. The 
design process is stable if the Lyapunov function time 
derivative is negative. On the other hand, the direct 
method of Lyapunov gives the sufficient stability 
conditions but not necessary [7], so the process loses 
the stability (or not loses) if this derivative becomes 
positive.  The stability of the different design 
strategies for three-transistor cells amplifier of Fig. 3 
was analyzed by the Lyapunov direct method. 
 



 
 

Fig. 3. Three-transistor cell amplifier. 
 
The Lyapunov function time derivative dV/dt is a 
negative for all trajectories on the initial part of the 
design process; i.e. all admissible strategies are stable 
at the beginning. It is supposed that the integration 
step is sufficiently small. However, when the current 
point of the trajectory gets to the ε -neighborhood of 
the stationary point a some strategies can lose the 
stability because the Lyapunov function time 
derivative becomes positive. It means that all 
trajectories of this group do not guarantee the 
convergence from the ε -neighborhood. In fact, each 
of the trajectory of this group has own critical ε -
neighborhood, which defines the maximum 
achievable precision. Another consideration is 
important too: the design process convergence slow 
down strongly before the ε -neighborhood reaching 
for all strategies of this group. It means that the 
derivative dV/dt is the negative but very small on the 
absolute value. It is interesting that the traditional 
design strategy belongs to this group. The critical ε  
values of some design trajectories for the circuit of 
the Fig. 3 and two types of the optimization 
procedure are shown in Table 1.  
 

Table 1. Critical value of the ε -neighborhood for 
some design strategies. 

 
Three last strategies have the critical parameter ε  
practically on the boundary of the reachable 
computer precision. We used the double length words 
for all numbers during the computing. At the same 

time these strategies are characterized of the negative 
values of the derivative dV/dt during the all design 
process. This property guarantees the process 
stability. On the other hand, the first five design 
strategies have the critical ε -neighborhood, which 
depends on the intrinsic properties of the strategy. 
The derivative dV/dt is not negative when the current 
point approaches to the critical ε -neighborhood for 
all of these strategies. It results to relative instability 
and slowing down the design process. We can 
conclude that all strategies  of this group, including 
the traditional one, have the problem with the 
stability when the high precision is needed and 
therefore the total design time for these strategies is 
very large. On the other hand there is a group of the 
strategies (for example 6,7 and 8 of the Table 1) that 
don’t lose the stability until practically any precision. 
The strategies of this group are characterized a large 
number of units in the corresponding control vector U 
and on the contrary, the strategies of the first group 
are characterized a large number of zeros as shown in 
Table 1. The time-optimal trajectory consists of the 
different design strategies in N-dimensional case, but 
it is very important that it includes strategies with the 
large number of units in the control vector on its final 
part. Therefore the time-optimal strategy has a very 
good stability and that’s why this strategy is more 
rapid than any other is. 

Now the function (11) is used for the analysis of 
the design trajectory behav ior with the different 
switch points. We can define the system design 
process as a dynamic transition process that provides 
the stationary point during some time. The problem 
of the time-optimal design algorithm construction is 
the problem of the transition process searching with 
the minimal transition time. There is a well-known 
idea [7]-[8] to minimize the transition process time 
by means of the special choice of the right hand part 
of the principal system of equations, in our case the 
form of the vector function ( )UXH , . By this 
conception it is necessary to change the functions 

( )UXH ,  by means of the control vector U selection 
to obtain the maximum speed of the Lyapunov 
function decreasing (the maximum of -dV/dt ) at each 
point of the process. Unfortunately the direct using of 
this idea does not serve well for the time-optimal 
design algorithm construction. It occurs because the 
change of the design strategy produces not only 
continuous design trajectories (when we change the 
strategy jju ∀= ,0  to the strategy jju ∀= ,1  for 

instance) but non-continuous trajectories too (in 
opposite case). Non-continues trajectories had never 
been appeared in control theory for the objects that 
are described by differential equations, but this is the 

N Control functions vector Critical  epsilon neighborhood
U (u1, u2, u3, u4, u5, u6, u7) Gradient DFP

  method method
1             ( 0 0 0 0 0 0 0 ) 9.85E-11 9.76E-11
2             ( 0 0 0 0 0 0 1 ) 5.92E-06 6.25E-07
3             ( 1 0 0 0 0 0 0 ) 9.51E-07 9.35E-07
4             ( 0 1 1 0 0 0 0 ) 6.88E-12 5.33E-12
5             ( 0 1 1 0 1 0 0 ) 7.55E-15 4.17E-15
6             ( 1 1 1 1 1 0 1 ) 3.94E-17 3.53E-17
7             ( 1 1 1 1 1 1 0 ) 9.15E-16 6.65E-16
8             ( 1 1 1 1 1 1 1 ) 8.15E-17 4.74E-17



ordinary case for the design process on the basis of 
the described design theory. In this case we need to 
correct the idea to maximize -dV/dt at each point of 
the design process. We define another principle: it is 
necessary to obtain the maximum speed of the 
Lyapunov function decreasing for that trajectory part 
which lies after the switching point. In this case the 
trajectories with the different switching points are 
compared to obtain the maximum value of -dV/dt.  
This idea was tested for some nonlinear circuits. The 
four nodes nonlinear circuit is shown in Fig. 4. 

 

 
 

Fig. 4. Four-node circuit topology. 
 
This circuit has five independent variables as 

admittance 54321 ,,,, yyyyy  (K=5) and four 

dependent variables as nodal voltages 4321 ,,, VVVV  

(M=4). The numerical results for the above 
mentioned idea verification, were obtained for this 
circuit on basis of careful analysis of Lyapunov 
function time derivative. We need to find the optimal 
position of the control vector switch point between 
the modified traditional strategy and the traditional 
strategy. It is interesting the behavior of the 
Lyapunov function time derivative as the function of 
the control vector switch point position. The absolute 
value of this time derivative increase when the switch 
point come to the optimal position before it and 
decrease after the optimal position as shown in Fig. 5. 
It means that the maximum value of the time 
derivative serves as the strong criterion for the 
optimal switch point position determination.  
 

 
 

Fig. 5. Absolute value of Lyapunov function time 
derivative dependency on switch point S. 

6 Conclusion 
The problem of the time-optimal system design 
algorithm construction is solved more adequately as 
the functional optimization problem of the control 
theory. The main components of the optimal 
algorithm construction can be defined as: the 
additional acceleration effect of the system design 
process; the optimal start point position of the design 
process; and the optimal position of the necessary 
switch points of control vector that is defined by 
means of the careful current analysis of the time 
derivative of the special Lyapunov function of the 
system design process. These ideas can serve as the 
basis to the realistic time-optimal design algorithm 
construction. 
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