
PARTIAL IMAGE RETRIEVAL SYSTEM USING SUB
TREE MATCHING

P. ANANDHAKUMAR, M. BOOPATHI RAJA and A.KANNAN.
Department of Computer Science and Engineering, Anna University,

Chennai – 600 025, India.

Abstract:

A novel approach is proposed for
quick and accurate partial image retrieval
from a large number of images based on tree
structure of images. Retrieving the partial
similar images generally requires a huge
amount of storage space for indexes due to
the large number of portions of images. The
proposed method constructs the ternary tree,
which greatly reduces the storage space for
database images and fast retrieval. The
computation of tree structure is not a
computationally intensive task and tree
comparison won’t take much time to find
the best match image. The system is capable
of accepting any size of query image
decided by user and retrieves the whole
images from the database. The retrieval time
is of the order of seconds ranging from 42
milliseconds to 10 seconds and translation
independent.

Keywords: Ternary Tree, Partial Image
Retrieval, CBIR, Sub Tree Matching, Image
Databases.

1.0 Introduction
 Now a day, digital images are
available in a huge number and these images
must be easily retrieved as per the users
query image. Hence techniques for quick
image retrieval are strongly needed. A
common approach is based on key words.
However, providing a keyword for each
image is a difficult task for computers and
time-consuming for humans. So, a best
image retrieval algorithm should retrieve
images as per the users query image exactly
and effectively. In some situations, whole
image is not available with the user and the

user is having only the partial images. In
those situations, query image is a partial one
and the image retrieval algorithm should
retrieve the whole image.
 To retrieve the exact or similar
image for the partial query image, the
database images should be represented in a
manner, which is effective for finding the
whole images for the partial queries. The
representation method should be less
computationally intensive, it should occupy
the less memory and it should take less time
to find the exact or similar images from the
database. The size of the query image will
vary and the user decides it, so the system
should be able to handle varying sizes of
query image. To consider these issues
ternary tree structure is developed for
database images. It takes less computation
time, less storage space, less searching time
and varying sizes of query image.

The proposed method avoids the
calculation of rough shapes and positions as
queries, which is used in the VisualSEEK,
calculation of quantitative features such as
colors, shapes, and textures, and region
based approaches. However, the existing
methods (VisualSEEK, QBIC, Region
Based approaches) are not always accurate
in identifying objects, and therefore most of
them use domain-specific constraints to
improve the accuracy. Here, we consider a
domain-independent approach, which
constructs tree structures for retrieving the
whole image for partial query image.

The remainder of this paper is
organized as follows; section 2 gives a
survey of related works. Section 3 gives the
details about image representation using
ternary trees. Section 4 explains the details
about the whole image retrieval for partial

image queries. Section 5 discusses the
results and Section 6 gives the conclusion.

2. Literature Survey
Acceleration of similarity-based

partial image retrieval using multistage
vector quantization proposed by Akisato
Kimura, Takahito Kawanishi and Kunio
Kashino for partial image retrieval from a
huge number of images based on a
predefined distance measure. Their method
utilizes vector quantization (VQ) on
multiple layers, namely color, block, and
feature layers. But, in our work a single tree
is constructed for an image, which takes less
computation than the calculation of multiple
layers. [1].

The Hex-Splines [2] proposed by
Dimitri Van De Ville, et al describe a new
family of bivariate, non-separable splines,
called hex-splines, especially designed for
hexagonal lattices. In our system, we use
hexagonal lattices for image representations.
 Symmetric Region Growing
approach [3] proposed by Shu-Yen Wan and
William E. Higgins describes the Symmetric
Region Growing in which region growing
has been focused primarily on the design of
feature measures and on growing and
merging criteria. These methods have an
inherent dependence on the order in which
the points and regions are examined. In our
system, symmetric region growing is
achieved using hexagons of uniform size,
which grows in all directions.

Akisato Kimura, Takahito
Kawanishi and Kunio Kashino propose a
new framework [4] for quick and accurate
partial image retrieval from a huge number
of images based on a predefined distance
measure. Their method extracts portions
from each database image at a constant
spacing, while it extracts all possible
portions from a query image. But, our
system constructs a tree structure for each
image and it is used for retrieving the whole
image for partial queries fastly.

The technique “Hexagonal Fast
Fourier Transform with Rectangular Output”

by J.C.Ehrhardt [5] explains that hexagonal
sampling is the most efficient sampling
pattern for a two dimensional circularly
band limited function. In our system, we use
a ternary tree for indexing images in image
databases.

Fabio Dell’Acqua and Paolo Gamba
[6] describe the application of a simplified
shape analysis technique based on a modal
representation of the object shape, which is
useful for improving the efficiency and
effectiveness of shape-driven searches in
image databases.

Injong Rhee, et al proposes the
technique “Quad tree - Structured Variable-
Size Block-Matching Motion Estimation
with Minimal Error” [7]. This paper
explains two efficient quad tree-based
algorithms for variable-size block matching
motion estimation. The first algorithm
employs an efficient dynamic programming
technique utilizing the special structure of a
quad tree. The second algorithm adopts a
heuristic way to select variable-sized square
blocks. It relies more on local motion
information than on global error
optimization. The details about quad tree is
well explained [7] which leads to the
development of Ternary tree in our work.

“Hexagonal Image Sampling”
proposed by R.C. Staunton [8] explains
about the use of regular hexagonal sampling
systems in robot vision applications.

“Edge Detection in a Hexagonal-
Image Processing Framework” approach is
proposed by. L. Middleton and J.
Sivaswamy [9]. This paper explains about
edge detection in the context of hexagonally
sampled images. The result shows that the
computational requirement for hexagonal
processing is less than that for square
sampled images. It also discusses about edge
detection using hexagonal sampling.

R.C. Staunton proposes the
technique called “One Pass Parallel
Hexagonal Thinning Algorithm” [10]. The
author presents the comparison between two
fully parallel thinning algorithms designed
for images sampled on square and hexagonal
grids. The comparison of square and
hexagonal sampling is useful for our

3.1 Hexagonal Sampling Ternary tree construction. Comparing with
all the works provided in the literature, our
ternary tree representation is different in
many aspects like reconstruction of image
from tree, no overlapping of regions and
constant node size. This tree structure helps
in achieving fast retrieval of images from
image databases, Object tracking, Object
hiding.

In hexagonal sampling, the input
image is tiled into minimum size of
hexagons. To lay a hexagon,1,3,5,5,5,3,1
pixel pattern is used i.e., for the hexagon 1
in the first row, first row’s third pixel,
second row’s first, second and third pixel,
third row’s first, second, third, fourth and
fifth pixel, fourth row’s first, second, third,
fourth and fifth pixel, fifth row’s first,
second, third, fourth and fifth pixel, sixth
row’s first, second and third pixel, seventh
row’s third pixel are taken. For a sample
image of 19x9 the hexagonal lattice is given
in Fig.2. Where 1 is first pixel, 2 is second
pixel and so on.

3.0 Image Representation Using
Ternary Tree

In this section, representing an
image using ternary trees, retrieving an
exact image from database using ternary
trees has been explained. Fig.1. shows block
diagram of image representation using
ternary tree. It takes an image as input and
outputs ternary tree. In image preprocessing
phase, image is smoothened using low pass
filter. Then the image is discretized into
hexagonal tiles in the next phase. For these,
hexagonal tiles, average value are found
using the R, G, and B values of the pixels.
These values are transformed into array
structure. For this array structure ternary tree
is constructed and it is given as the output.

Number of hexagons in the image can be
found using the following formula.
Number of hexagons in the row order,
x = (((Image height/ (Hexagon
height+1))*2)-1) (3.2)
Number of hexagons in the column order,
y= ((Image width/ (Hexagon width-1))-1)

 (3.3)
Total number of hexagons in the image=x*y

 (3.4)

3.2 Ternary Tree Formation

For each and every image in the
database Ternary tree is formed. From the
average values, which are stored in the array
structure, the algorithm builds the Ternary
tree. This is shown in Fig.3. Algorithm first
forms the two-dimensional array (shown in
Fig.4.). For example, let the value be 25.To
find the number of rows and columns,
square root of the value is found. (i.e. 5 for
this example). So the array size will be 5x5.
If the value is 120, then the square root is
10.For the remaining 20 nodes 2 rows are
added. So the array size is 12x10. In some
cases for the non-squared number, some
array elements may by kept vacant. In those
situations, they will be marked as null nodes.
The first element of the array is taken as root
node and its adjacent and connected three
nodes are taken as child nodes. The
algorithm prints the root and child nodes
recursively as shown in the Fig.3.

To smooth the image, low pass filter is
applied; the value of the center pixel is given
by,
‘e’= (a+b+c+d+e+f+g+h+i) / 9 (3.1)
Where, the variables a, b, c, d, e, f, g, h
and i are pixel values of 3 x 3 image.

Fig.1. Image Representation Using
Ternary Tree

I
M
A
G
E

Tern-
ary
Tree
Outp
-ut

Trans
-form

to
Array
Struc.

Hexa
gonal
Tiling

Image
Prepro
cessing

Image Representation

Fig.2. Hexagonal Lattice of single
Hexagon

4.0 Whole Image Retrieval From
Database

The database images are
represented by ternary trees and stored in
the database. When the query image is
given as input, the ternary tree is
constructed for that image. To retrieve
the whole image for the partial query
image, the system compares the nodes of
the query image and database images.
The database image is tiled as shown in
Fig.2. Let the partial query image starts
at pixel (3,3). For this query image,
hexagonal tiling is similarly applied. The
first hexagon in the database image starts
at x position 1 and ends at x position 5, y
position 1 and ends at y position 7. For
query image, starts at x position 3 and
ends at x position 8, y position 3 and
ends at y position 9. The mismatch starts
here, to avoid this thresholding is
applied.

Fig.3. Ternary Tree

Fig.4. Array Structure

Root 1 A11 A12 A13 A14
B11 Root 2 A21 A22 A23
B12 B21 Root 3 A31 A32
B13 B22 B31 Root 4 A41
B14 B23 B32 B41 Root 5

3.3 Ternary Tree Construction
Algorithm
Input: Image from the database.
Output: Ternary tree.
Step 1: Read the image from database and
grab the pixel values of the input image.
Step 2: Smooth the image using low pass
filter as given in the equation (3.1). To retrieve the whole image, partial

image’s ternary tree is compared with the
database image’s ternary tree. In comparison
process, the query image’s ternary tree is
considered as a subtree. This sub tree is
moved across database image’s tree and
number of matching nodes are found. If the
number of matching nodes are with in the
threshold then that image is retrieved and
displayed to the user. So the system is also
able to find the similar images. This
proposed system is able to find the exact and
similar images from the database for the
partial query image. If the query image’s
tree, doesn’t match with any images in the

Step 3: Tile hexagons in 1,3,5,5,5,3,1
patterns, as shown in the Fig.2.
Step 4: Find the(R, G and B) average value
for each hexagon.
Step 5: Transfer these values to array
structure.
Step 6a: Take the first element of the array
as root and its connected three nodes are
printed as child nodes.
Step 6b: Print the child nodes recursively
until all elements in the array is printed
recursively.

n

whole image

Ternary trees are stored in
database

If matching
odes are with in
the threshold
then retrieve

Partial Query
Image Input

Image
Representation

Each Image
as Input

Image
Database

Image Representation and Retrieval

Compare ternary trees of query
image with database images and
move sub tree across whole tree

Image
Representation

Fig.5. Whole Image Retrieval for partial
image queries

database then system displays that “image
not found”.

4.1 Whole Image Retrieval
Algorithm For Partial Image
Queries
Input: Partial query image.
Output: Whole images from the database.
Step 1: Get the image from image database.
Step 2: Using ternary tree construction
algorithm, construct the tree for each image
in the database. Fig.6. Partial Image Retrieval
Step 3: Store this Ternary tree in database.

0

200

400

600

800

1000

1200

0 2 4 6 8 10

Time in Seconds

N
um

be
r o

f I
m

ag
es

Step 4: Get the query image from user.
Step 5: Using ternary tree building
algorithm, construct the tree for the query
image.
Step 6: Compare the query image’s ternary
tree with the database image’s ternary tree.
Step 7: Move the query images ternary tree
across database image ternary tree.
Step 8: Count the number of nodes that
match with the database images.
Step 9: If the numbers of nodes matching
are with in the threshold then that image is
retrieved and displayed to the user.
Otherwise output as “image not found”.

Fig.7. Graph between Number of images
Vs Retrieval time in Seconds

Fig.8. Graph between Retrieval time
in Seconds Vs Query image size in
pixels

Step 10: Repeat the process for all images
in the database.

5 Results and Discussions
 The entire system is implemented in
Java and 100 images are considered for
testing the system. The size of the image is
352x288. These images are stored in Oracle
database. The whole image is retrieved as
per the user’s partial query image.
Compared to other systems [1][4], our
system is capable of accepting any size of
query image and retrieves the exact and
similar images from the database. The
retrieval time is of the order of milli seconds
ranging from 10 milliseconds to 9 seconds,
when it is executed in 3Ghz Pentium IV
Processor with 1GB RAM. Results are
shown in Fig.6. where above image is the
partial query image and below image is the
retrieved image.

Fig.7. shows the graph between number of
images in the database and retrieval time in
seconds. This graph shows that the retrieval
time increases with the number of images.
Using multithreading techniques for
searching the tree will reduce the retrieval
time. Fig.8. shows the graph between
retrieval time in seconds and size of partial
query image in pixels. This graph shows that
the retrieval time decreases with increase in
query image size.

6 Conclusion
 In this work, tree structure based
retrieval of whole image for the partial
query image is designed and
implemented. The system is capable of
handling the partial image of any size as
it’s input and identifies the correct image
independent of translation. A Ternary
tree based data structure is used, which
consumes less storage space and fast
retrieval of whole images from the
database. Further works in this direction
could be the inclusion of hexagonal trees
for effective storage and retrieval of
images and reducing the retrieval time.

Sensitivity analysis for similar image
retrieval using partial image queries:

Sensitivity analysis is carried out
with 1008 images and 120 partial queries
where, 70 queries for image available case
and 50 for non-available case. The system
responded well for all queries, since false
positive as well as false negative decisions
are nil. From our observations, we provide
the results for sensitivity analysis in Table.1.
Table 1 Sensitivity table
Parameter Actual

observation
Observation
in
Percentage

True positive (1,1) –
Perfect match

70 100%

True negative (0.0) –
Image not found – if
not available

50 100%

False positive (0,1) –
Mismatch

0 0%

False negative (1,0) –
Mismatch

0 0%

References
[1] Akisato Kimura, Takahito Kawanishi
and Kunio Kashino, “ Acceleration of
similarity-based partial image retrieval using
multistage vector quantization”, Proceedings
of the 17th International Conference on
Pattern Recognition, 2004 (ICPR
2004), Volume: 2, August.23-26, 2004,
Pages: 993 – 996.
[2] Dimitri Van de Mille, Thierry Blu and
Michael Unser, “Hex Splines: A Novel

Spline Family for Hexagonal Lattices”,
IEEE Transactions on Image Processing,
Vol.13. No.6. June 2004, pp. 758-774.
[3] Shu Yen Van and William E.Higgins,
“Symmetric Region Growing”, IEEE
Transactions on Image processing, Vol.12,
No.9, September 2003, pp. 1007-1015.
[4] Akisato Kimura, Takahito Kawanishi
and Kunio Kashino, “ Similarity-Based
Partial Image Retrieval Guaranteeing Same
Accuracy as Exhaustive Matching”,
Proceedings of International Conference on
Multimedia and Expo. (ICME2004) June
2004.
[5] J.C.Ehrhardt, “Hexagonal Fast Fourier
Transform with Rectangular Output”, IEEE
Transactions on Image processing, Vol.41,
Mar 1993, pp. 1469-1472.
[6] Fabio Dell Aquca and Paulo Gamba,
“Simplified Modal Analysis and Search for
Reliable Shape Retrieval”, IEEE
Transactions on Circuits and Systems for
Video Technology, Vol.8, No.5, September
1998. pp. 656-666.
[7] Injong Rhee, Graham R. Martin, S.
Muthukrishnan, and Roger A. Packwood,
“Quad tree-Structured Variable-Size Block-
Matching Motion Estimation with Minimal
Error”, IEEE Transactions on Circuits and
Systems for Video Technology, Vol.10, No.1,
February 2000, pp. 42-50.
[8] Richard C. Staunton, “Hexagonal Image
Sampling: A Practical Proposition”
Proceeding of SPIE, 1989, Vol.1008, pp.23-
27.
[9] L. Middleton and J. Sivaswamy, “Edge
Detection in a Hexagonal-Image Processing
Framework,” Image and Vision Computing,
Dec. 2001, Vol. 19, No. 14, pp. 1071–1081.
[10] R.C.Staunton, “One Pass Parallel
Hexagonal Thinning Algorithm”, IEE
proceedings of Visual Image Signal
Processing, February 2001, Vol.148, No. 1,
pp 45-53.
 [11] V.S.Subrahmanian, “Principles of
Multimedia Database Systems”, Morgan
Kaufman Publishers, 2001.

	PARTIAL IMAGE RETRIEVAL SYSTEM USING SUB TREE MATCHING
	Abstract:
	3.0 Image Representation Using Ternary Tree
	
	Fig.1. Image Representation Using Ternary Tree

	Fig.3. Ternary Tree
	
	Root 1
	B11

	Root 2
	B21

	Root 3
	A31
	A32
	B22
	B31

	Root 4
	A41
	B23
	B32
	B41

	Root 5

	Fig.4. Array Structure
	5 Results and Discussions
	
	
	
	
	
	
	
	6 Conclusion
	In this work, tree structure based retrieval of w

