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Abstract: - Though the problem of congestion has been studied since the beginning of Internet, it continues to demand attention. This work proposes an Active Congestion control (ACC) scheme based on Available Bandwidth-based Congestion Detection (ABCD), which regulates the traffic according to network conditions. Changes in the available bandwidth can trigger re-adjustment of the flow rate. We have introduced packet size adjustment at the intermediate router in addition to rate control at the sender node, scaled according to the available bandwidth, which is continuously monitored. To verify the improved scheme, we have extended Ted Faber’s ACC work [1] in NS-2 simulator. With this simulator, we verify ACC-ABCD’s gains such as a reduced number of packet drops and a more stable performance. Our tests prove that the ACC-ABCD technique yields better results as compared to TCP congestion control with or without the cross traffic.
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1. Introduction
The end-to-end approach is considered to be a robust one and it has served quite well until recently, when researchers started to explore the information available at the intermediate node level. This approach triggered a new field called Active Networks, in which the intermediate nodes have a much larger role to play than that of the naïve nodes. It was expected that with the era of high bandwidth networks, congestion control would become a historical phenomenon [2]; on the contrary, it continues to be an important task for the networking community. Bhatacharjee [3] regarded congestion control as a problem that was unlikely to disappear in the near future. Over the past few years the active networking community has been suggesting ways which highlight the importance of network level computation. Internet experiences packet losses frequently due to congestion. Widmer et al. state that imbalance in resource allocation should be regarded as the prime cause for instances of congestion [4]. 

The proposed active congestion control technique presents a new intermediate router based congestion control mechanism. It makes use of available bandwidth-based congestion detection to determine the degree of congestion and to formulate its remedial measures. The ACC-ABCD approach uses packet size adjustment at the intermediate router in addition to the rate control at sender.  

The congestion control mechanism used by TCP reacts to a single packet loss by halving its congestion window. This causes abrupt changes in the sending rate. This problem is sorted out by use of the Scaled Rate Change (SRC) approach in ACC-ABCD. This improves reliability, which is demonstrated by a reduced number of packet drops. The ACC-ABCD approach uses packet size adjustment at the intermediate router in addition to the rate control at sender. We evaluate and validate our approach through simulation using NS-2. 

Section 2 provides the background of classical congestion control techniques. In section 3, we have surveyed the work related to congestion control through network level computation, i.e., Active Congestion Control. Section 4 outlines the proposed ACC-ABCD methodology. The details of the experiments and the test results are given in section 5. The concluding section 6 lists achievements and limitations of our methodology.
2. Classical Techniques

Congestion control and avoidance was well documented for the first time in [5], which incorporated into the TCP suite some of the congestion-control remedies like slow start and congestion avoidance. Jain [2] distinguished between two commonly interchangeable terminologies called congestion control and congestion avoidance. According to Jain et al., congestion control is a recovery process from a congested state whereas congestion avoidance is a prevention mechanism designed to keep the network from entering the congested state. Further, they state, “[t]he congestion avoidance scheme allows a network to operate in the region of low delay and high throughput.” While exploring the reasons for congestion, Lotfi [6] said that “[c]ongestion is a mismatch of available resources and the amount of traffic.” 

Brakmo and Peterson [7] proposed an end-to-end congestion avoidance scheme (which came to be known by the name TCP Vegas), that increases the throughput and decreases the packet loss. In other versions of TCP, the size of the congestion window decreases only when a packet is lost. TCP Vegas, on the other hand, tries to anticipate congestion and adjusts its transmission rate accordingly. By using measurements of Round Trip Time (RTT), TCP Vegas modulates the congestion window size. Secondly it uses the RTT estimate to retransmit a dropped segment earlier. Thirdly it modifies Slow Start by allowing exponential growth only for every other RTT measurement. For the duration between the two measurements, the congestion window stays invariant. Golestani [8] formulated the problem of end-to-end traffic as an optimization problem. The Golestani method attempts to avoid congestion, while being fair to all the flows into the network. Fairness requires restricting every source host to an equal share of gateway bandwidth. Mo and Walrand [9] presented the multiclass closed-fluid model, which is used to justify the existence of a window- based fairness scheme for end-to-end congestion control algorithms. The theory presented in this work is supported by mathematical proof but no practical implementation was provided. 

2.1 ECN marking
Explicit Congestion Notification (ECN) is used as a means of conveying congestion information back to the end systems. ECN was proposed in 1999 by [RFC 2481] and incorporated into the TCP/IP suite in 2001 by [RFC 3168]. Kunniyur [10] proposed a scheme to adjust the ECN marking such that, the loss of packets can be minimized. Li [11] talks about TCP-ECN where bottlenecks mark the packet so that packet loss is avoided. TCP uses AIMD (additive increase multiplicative decrease) mechanism, which is mainly responsible for rate control. Li et al said that in traditional congestion-control schemes, the packet loss is unavoidable. 

2.2 Random Early Detection (RED)
Floyd [12] states that RED gateways improve the fairness and performance of TCP traffic. They have presented a RED queue-management scheme, which keeps the buffer from overflowing. They infer that RED configuration is still a research issue. Janarthanan [13] states that RED gateways are intended for a network where a transport protocol responds to congestion indications from the network. 

2.3 Feedback-Based End-to-End Congestion Control

Congestion control has been traditionally dependent on the end-to-end adjustment of the flows. Sources adjust their transmission rate in response to feedback from the network nodes [6]. 

Psounis [14] describes the scheme where centrally managed techniques will be replaced by distributed network management. Network management is achieved through the polling of managed devices, which are observed for anomalies. Psounis [14] demonstrated how centrally located management stations initiate a large amount of traffic, which can be suppressed, with the technique of active networks. Thus, congestion control was regarded as a necessary part of efficient network management. Managed devices are responsible for feedback. Bhattacharjee [15] describes the idea of a router taking the initiative and restricting the much demanding flows at the time of congestion. This idea gives rise to use of network level computation. Santos [16] proposed a packet-marking scheme in which link-level control is exercised so that congestion may not spread to other network nodes. 

Thus the classical methods started using and demanding more information from network devices for congestion control. The methods outlined in the next section, require that intermediate nodes should provide both information as well as computational facility for congestion control.

3. Active Congestion Control

Bhattacharjee [3] proposed the use of active-networks for congestion control. He stated that “[a]ctive networking is a natural consequence of the end-to-end argument, because certain functions can be most-effectively implemented with information that is available inside the network.” [17] 
Since only a limited set of functions can be computed at an active network node, Computing these functions may involve state information that persists at the node. Congestion is an intra-network event and is potentially far removed from the application. The time that is required for congestion notification information to propagate back to the sender limits the speeds with which an application can self regulate to reduce congestion or ramp up when congestion has cleared. Bhatacharjee et al proposed three methods for processing application specific data:

(i) Unit level drop – A packet that specifies one particular function (one particular flow) is dropped; for some time thereafter, every packet that matches the same subset of its labels is also dropped.

(ii) Buffering and rate control – Putting additional buffering into the switch, which has to monitor the available bandwidth and rate control the data.

(iii) Media Transformation – It’s an intelligent dropping of data when congestion occurs. Transformation of data at the congestion point into a form that reduces the bandwidth but preserves as much useful information as possible.

Active Congestion Control (ACC) [18 and 2] uses router participation in both congestion detection and recovery. Congestion is detected at the router, which also immediately begins reacting to congestion by changing the traffic that has already entered the network. Incorporating congestion detection as well as recovery at the router reduces the feedback delay. This lends a much greater stability to the system. When router experiences congestion and it is forced to discard the packet, the router calculates the new window size that the endpoint would choose if it had instantly detected the congestion. The router then deletes the packets that the endpoint would not have sent and informs the endpoint of its new state. Internal network nodes beyond the congested router see the modified traffic, which has been tailored as though the endpoint has instantly reacted.

Figure 3-1 shows the actual simulation topology used for ACC experiments. 
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Figure 3-1: ACC topology (Ref – [1] pp. 4)

Lemar [19] designed and implemented a reusable congestion control component used as a part of protocol capsule type definition. The capsule is created and sent by the sender node. It requests the intermediate nodes to use the congestion control method while forwarding. 

Wang [20] presented an algorithm called FACC and its performance analysis. The work  compares FACC (forward active network congestion control) with Tahoe TCP and demonstrates that FACC increases the average throughput of each end point with or without cross traffic. FACC monitors the queue at the intermediate node. It informs the source node and the intermediate nodes in the upper follow path. It creates a filter and uses Slow Start to ramp back to normal flow.

Gyires [21] proposed an active network algorithm that can reduce the harmful consequence of congestion due to aggregated bursty traffic. When traffic burstiness at a router exceeds a certain threshold and the routers buffer size, the router divides the traffic into independent paths. When traffic burstiness falls below the threshold the dispersed paths are collapsed into the original single path. The number of paths depends on the burstiness. The paths are the adjacent routers, that have proven to be capable of taking over dispersed traffic in previous cases with minimal cost. 

Cheng [22] presented a network assisted congestion control (NACC).  NACC utilizes RTCP packet as the control message carrying information about the desired transmission rate to use. The intermediate routers adjust this value according to available resources and forwards the control messages to the next node. Receiver transmits the updated information and the sender adjusts transmission behaviour according to the received information.

3.1 Available Bandwidth Estimation

Cheng [23] used a three packet-probing algorithm for determining available bandwidth for a layered multicast congestion control. This technique was first proposed in [22]. 

Packet-pair method uses two packets, which are sent out, back to back, by the intermediate node, located at the start of the flow in to the bottleneck link. If one is t second apart from the other after traversing the bottleneck link,

         t  =   
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4. Available Bandwidth-based Congestion Detection (ABCD)

The available bandwidth is defined as the maximum rate that the path can provide to a flow, without reducing the rest of the traffic. As the utilization of bottleneck link increases, available bandwidth decreases. Our method uses a non-intrusive technique to estimate the available bandwidth. Routine data packets are used to continuously monitor the available bandwidth.

Throughput is directly proportional to packet size, hence, a perfect scaling of rate and packet size should help maintain a high throughput in case of congestion. The ABCD approach modulates the packet size, based on its share of bandwidth. 

The queue size at intermediate nodes can be measured in packets or in bytes. In our system we make use of the byte mode. The queue size is fixed to a certain number of packets but the mean packet size is set to the original size of packets. So the buffering capacity of the queue to store the incipient packets is in bytes.

4.1 ACC – ABCD Algorithm

Step 1. Monitor the available bandwidth of the bottleneck link. The receiver router obtains the available bandwidth by using a triplet of data packets by using the following: 

 Bavailable    =
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                                                  ……….[24]
PacketSizei (i=1, 2, 3) = packet size in bytes 

ti (i=1, 2, 3) = arrival time of packet in seconds

Step 2.  Here the link under consideration is facing the scarcity of link bandwidth. Hence the available bandwidth is the bottleneck resource. We scale packet size linearly by observing change in the available bandwidth. We have chosen the threshold of 0.5 Mb/s; at any value below this we start reducing the packet size by 200 Bytes for each 0.1 Mb/s.

Step 3. The queue at the sender router is measured in bytes. That means the upper bound of this queue buffer is (number of packets * mean packet size). Each de-queued packet is evaluated against the packet size that (step 2) has been calculated to be appropriate. 

Step 4. Rate needs to be scaled in accordance with the new packet size. We estimate this rate change using –

r = (1- e –T/K) S / T + e –T/K rold             
                    …………..(4.2)   [24]
where -
T = ( t = (δt2 – δt1 / 2) 

δ t = enqueue (t) – dequeue (t) i.e. inter   arrival time.

S = Change in the size of the packet, 
K is a constant (between 100 and 500)

The spacing of two packets (δ t) at the queue provides a measure of the amount of traffic in the link i.e. congestion level.
When the link is congested, the fair rate r is computed such that the rate of the aggregate incoming rate equals the link capacity. 

Step 5. This process of observing drop or increase in available bandwidth continues for each triplet received at the other end of the link under consideration where PacketSize is the size of the second packet, and Bbottleneck is the bottleneck bandwidth. 

The three packet probing algorithm uses three packets for estimating the available bandwidth as follows:

   BAvailable = 
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where PacketSize2 and PacketSize3 are the sizes of the second packet and the third packet, respectively, and ta1, ta3 are the arrival times of the first and the third packet, respectively.

Our method uses three packet algorithm to estimate the available bandwidth. We use the circuit configuration of Fig 3-1 to test our algorithm and to compare it with other algorithms.

ACC-ABCD system does not start congestion control after a packet is dropped. It tries to take pre-emptive action by monitoring the bandwidth. If the available bandwidth were to fall below a specified threshold, it would start modulating the flow so that congestion may not occur. This eliminates the problems of low through-put due to slow start. The system should be stable because the changes are carried out from the point of congestion to the sender. The delay in taking action, when the action is required to be taken only by the sender, is avoided, since the intermediate node, which monitors the bandwidth is able to begin taking the action.

5. Experiments, Testing and Analysis 

TOOLS: NS-2 along with a few of the available tools were used for the experiments. The tools were Network Animator, Trace-graph and NANS-2 and Nscript from George Washington University.

SIMULATION TOPOLOGY: We have used the dumbbell topology, with senders and receivers on either side of a single bottleneck link, as depicted in Figure 3-1. This makes it possible to vary the bandwidth-delay product of link 1-2, which is traversed by all the TCP flows, without affecting the cross-traffic.
SIMULATION DATA: The simulation experiments are run 30 times, and the data we report, is in the form of mean values over those 30 trials. To be able to see the differences among the 30 trials, we seed the simulator’s number generator with the current time at each invocation.

The bulk traffic sources send data continuously throughout the simulation. All links from an endpoint to a router have a delay of 10 ms and bandwidth of 10Mb/s except the bottleneck link, which is of bandwidth 2 Mb/s and a delay of 10 ms. All endpoints use 1000 byte packets. The cross traffic endpoints are uncontrolled endpoints, sending on-off traffic with a burst and idle time of 2.5 sec and sending rate of 100 kb/s. Varying the delay on the link from router 1 to 2 changes the bandwidth delay product that the bulk sources see. The simulations vary the delay between 100 and 300 ms; this range was selected because it is the high end of common round trip time in Internet. Each simulation lasts for 200 seconds.

5.1 Verification of the ABCD formula

We verified equation (4.1) [23] for calculation of the available bandwidth by sending a CBR traffic and measuring the available bandwidth at an intermediate router. Each simulation was of 200 seconds. The available bandwidth differed from the set value by no more than 6.0%. 

5.2 Verification of variation of Packet and Window size with Available Bandwidth

The packet size has to scale down when the available bandwidth falls below the threshold value. Fig 5-1 shows that the packet size varies as required. In NS-2 window size is calculated in packets. Therefore if we change the packet size, the window size should automatically change in proportion. Fig 5-2 and Fig 5-3 verify the result. In Fig 3, the gradual increase in the window size at particular moments depicts the effect of the additive increase algorithm of TCP. It can be observed that after halving (point 61 in Figure 5-3) the window (in case of a packet drop), the window size does not change with the packet size, till it moves out of the slow start process. 
This shows that ABCD along with TCP provides a stable environment, which is able to respond to increase or decrease in network capacity.
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Figure 5-1: Available bandwidth Vs packet size
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Figure 5-2: Window size - Packet size scaling with time
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Figure 5-2: Window size and packet size

We have performed simulations with delay-bandwidth products of 100 ms, 200 ms and 300 ms for link 1-2 in Fig 3-1. As the delay-bandwidth product increases, the number of dropped packets decreases to 0 for ABCD. Table 1 shows the results for a delay-bandwidth product of 100 ms. The great improvement in the number of packets dropped is clearly brought out. The throughput decreases 5.5% because the method does not allow the available bandwidth to fall to zero. Hence the loss of packets is avoided at the cost of a marginal decrease in throughput.
	
	TCP
	ACC
	ABCD

	Number of Dropped Pkts.
	886
	716
	24

	Throughput of Flow 1
	150.03 Kb/s
	150.553 Kb/s
	223.886 Kb/s

	Throughput of Flow 2
	149.258 Kb/s
	139.952 Kb/s
	136.566 Kb/s

	Throughput of Flow 3
	158.602 Kb/s
	154.455 Kb/s
	135.052 Kb/s

	Throughput of Flow 4
	151.898 Kb/s
	159.37 Kb/s
	136.708 Kb/s

	Throughput of Flow 5
	152.345 Kb/s
	172.455 Kb/s
	137.133 Kb/s

	Throughput of Flow 6
	154.011 Kb/s
	136.664 Kb/s
	141.039 Kb/s

	Throughput of Flow 7
	158.358 Kb/s
	165.67 Kb/s
	134.342 Kb/s

	Throughput of Flow 8
	149.055 Kb/s
	152.384 Kb/s
	141.231 Kb/s

	Throughput of Flow 9
	149.014 Kb/s
	151.369 Kb/s
	128.492 Kb/s

	Throughput of Flow 10
	152.752 Kb/s
	142.345 Kb/s
	126.808 Kb/s

	Total Throughput
	1525.32 Kb/s
	1525.22 Kb/s
	1441.26 Kb/s


             Table 1: TCP-ACC-ABCD Comparison

6. Conclusions

For congestion control, this paper proposes the method of active congestion control based on monitoring of available bandwidth. The method is based on the assumption that the bottleneck resource is bandwidth. The method uses the adjustment of packet size and flow rate control at the sender.   The method decreases the packet drops by as much as 39.6 times at the cost of a 5.5% decrease in throughput. The decrease in throughput can be further reduced if the threshold level of the available bandwidth, used in our formulae, is reduced. However this may increase the number of packets dropped. The tuning can be done through use of historical data of cross-traffic. 

We envision a system where all the intermediate nodes are ABCD compliant. In such a system, the number of dropped packets will be minimized. 

The paper shows that the ACC-ABCD is an effective method for congestion control. The method provides improved stability and reliability to TCP flows.

The disadvantage of the active networks is the processing overhead, due to  the introduction of computation at intermediate nodes. This would require increased processing power at each of the intermediate nodes. NS-2 is not a suitable tool for measurement of the processing overhead. The active network research community has also to provide for security of the system before active networks can be used on the Internet. 
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