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Abstract:– When using the Lyapunov synthesis approach to construct a stable fuzzy control system, one important
way is to regard the fuzzy systems as approximators to approximate the unknown functions in the system to be
controlled. Concerning the unknownness of the unknown functions, generally there are two cases: a completely
unknown case, and a partly unknown case. However, most of the schemes presented so far have only focused on
the former. Clearly, if an unknown function belongs to the latter, the knowledge available about the function
should be utilized as much as possible in the development of the control system. In this paper, our goal is to
design a fuzzy controller for a class of model reference adaptive systems with uncertainties, which can correspond
to the either case. Also, we propose a unique way to deal with the uncertainties, i.e., adopt a switching function
with an alterable coefficient, which is tuned by adaptive law based on the tracking error.
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1 Introduction

The objective of a controller is to drive the output of
a plant to keep at reference value or to follow another
signal. To this end and under some circumstances
where system knowledge and dynamics models in the
traditional sense are uncertain and time varying, fuzzy
control has appeared strongly capable in a large num-
ber of research and industrial applications. However,
some researchers who stick on the traditional control
system where the proven system stability is the first
task to be considered casted a skeptical look some-
times on the system due to the lack of formal synthe-
sis technic that can guarantee system stability among
other basic requirements for a control system. This
is the major reason why a large number of research
has focused on fuzzy control systems with a keyword
of ”system stability” since earlier 1990’s (e.g. [1]-[10]
and references therein). In such a fuzzy control sys-
tem, the Lyapunov synthesis approach is used to con-
struct a stable controller, and to deal with the uncer-
tainties in the system, the traditional adaptive control
theory is merged with fuzzy approximation theory [2]
where the unknown functions in the system are ap-
proximated by parameterized fuzzy approximators.

In general, there are two kinds of uncertainties in
a system to be controlled. One is caused by the lack
of the system structure and information, and another
one is the so-called disturbances. In order to deal with
the one of uncertainties for lack about the system, the
approaches developed so far are almost same, i.e., us-
ing the fuzzy approximators to approximate the cor-
responding functions. Obviously, before using a fuzzy
approximator to approximate an unknown function,
the extent of the unknownness should be examined.
Generally, there are two cases: a completely unknown
case, and a partly unknown case. Actually, most of
the schemes presented so far have only focused on the

former, and few studies pay attention to the latter. In
a system to be controlled, if an unknown function be-
longs to the latter, the knowledge available about the
function, clearly, should be utilized to the maximum
in the development of the control system. Although
some papers [4],[5] focused such a problem, the pro-
posed schemes did not involve the control gain, which
is not a trivial problem indeed in a control system.
On the other hand, to deal with the one of uncertain-
ties with disturbances which may come from either
the inside or the outside system, the upper bounds of
uncertainties are assumed to be known as well as the
reconstruction errors between the optimal approxima-
tors and their corresponding functions to be approx-
imated [9]. In fact, such a kind of the upper bounds
about the uncertainties is not easy to be known in
advance of designing the control system, therefore, to
be safe for the system stability, a larger magnitude of
assumption about the uncertainties is opposed, and
finally, a bigger chattering in control inputs is always
concerned. Here in this paper we employ the idea that
such an upper bound is tuned by adaptive law [5].

In this paper, our goal is to design a fuzzy con-
troller for a class of model reference adaptive systems
with uncertainties in which any type of the uncer-
tainties can be corresponded. Also, to deal with the
uncertainties, we adopt a switching function with an
alterable coefficient, which is tuned by adaptive law
based on the tracking error, in stead of using the
upper bound assumptions. The adaptive law to ad-
just all parameters will be developed based on the
Lyapunov synthesis approach. It is shown that the
proposed fuzzy controller guarantees tracking error,
between the states of the considered system and its
reference model, to be uniformly bounded, also the
bound can be made arbitrarily small by choosing ap-
propriately related parameters, while maintaining all



signals in the system asymptotically stable. Finally,
the control performance will be confirmed by a com-
puter simulation.

2 Problem Statement
This paper focuses on the design of adaptive fuzzy con-
trol algorithms for a class of nonlinear systems whose
equation of motion can be expressed in the canonical
form:

ẋ1(t) = x2

. . .

ẋn−1(t) = xn

ẋn(t) = a1(X)T X + b1(X)u(t) + d(t) (1)

where XT = [x1 x2 · · · xn] =
[
x ẋ · · · x(n−1)

]
is the

system state; u(t) is the control input; a1(X) ∈ Rn×1,
and b1(X) are smooth vector function, scalar func-
tion, respectively; d(t) denotes the disturbance in the
system. In the above system, generally functions
a1(X), b1(X) are not known as well as d(t). How-
ever, there is a case that they can be partly known
prior to developing the control system. In this way,
the knowledge about the functions, clearly, should be
utilized as much as possible in the development of the
control system to improve the control performance.
Therefore, system (1) can be rewritten as,

Ẋ(t) = (A0 + A) X + B(b0 + b(X))u + Bd(t) (2)

where,

A0 =
[

0 In−1

aT
0

]
∈ Rn×n,

A =
[

0 0n−1

aT (X)

]
∈ Rn×n, B =




0
...
1


 ∈ Rn×1

a0 ∈ Rn×1, and b0 are the known parts in a1(X), and
b1(X), respectively, which will be used in the con-
troller structure directly, and a(X) ∈ Rn×1, and b(X)
are the unknown parts in a1(X), and b1(X), respec-
tively. If a1(X) or b1(X) in (1) is completely unknown
previously, a0 or b0 simply becomes 0. Clearly, form
(2) can correspond to either case: a1(X) or b1(X) is
completely unknown or partly unknown.

A stable, controllable reference model is given as
follows,

Ẋm(t) = AmXm + Bmr (3)

where Xm ∈ Rn×1 is the state vector of the reference
model; and Am, Bm are given by

Am =
[

0 In−1

aT
m

]
∈ Rn×n,

aT
m = [am1 · · · amn] ∈ R1×n, BT

m = [0 · · · 0 bm] ∈
R1×n.

The problem we consider in this paper is to design a
controller u(t) for (2) which ensures the system state
X(t) follows the reference model state Xm(t), namely,

tracking error vector E(t) ∈ Rn×1, which is defined
by

E(t) = X(t) − Xm(t) (4)

is uniformly bounded, also the boundary can be made
arbitrarily small by choosing appropriately related pa-
rameters, while maintaining all signals in the system
asymptotically stable.

The nonlinear functions a and b in (2) are unknown,
so before developing our control algorithm we have to
solve the problem of approximating a(X) and b(X).
In the following section, it will be shown that using
fuzzy IF-THEN rules, the unknown functions a and
b can be approximated by some parameterized fuzzy
approximators.

To proceed with our development, we state our as-
sumptions on the system.

Assumption : The control gain is finite, nonzero,
and of known sign for all X ; without loss of generality
this sign can be taken as positive, i.e., b0 ≥ 0, b(X) >
0. In addition, the uncertainty d(t) is bounded.

Remark 1 As the regular assumptions postulated on
the control gain b [9],[13], a priori upper bound
of its variation, | d

dtb(X)|, should be known. Here
in this paper we remove it from the assumption.

Remark 2 Compared with other schemes, there is an
important difference about the assumption postu-
lated on the uncertainty. In this paper, we just
suppose that the uncertainty is bounded, and the
value of real boundary does not need to be known.

3 Adaptive Fuzzy Controller

3.1 Fuzzy Approximator

Fuzzy model addresses the imprecision of the input
and output variables directly by defining them with
fuzzy sets in the form of membership functions. The
basic configuration of fuzzy model includes a fuzzy
rules base, which consists of a collection of IF-THEN
fuzzy rules. Now, we consider a fuzzy model with sin-
gleton consequent, product inference, Gaussian mem-
bership function in the antecedent, and central average
defuzzifier, hence, such a fuzzy model can be written
as

F(Z) = WT · G(Z) (5)

where ZT = [z1, z2, . . . , zn], WT = [w1, w2, . . . , wN ]
with N being the number of fuzzy rules;
GT (Z) = [g1(Z), g2(Z), . . . , gN (Z)] with

gj(Z) =
�n

i=1 µ
Ai

j
(zi)

�N
j=1
�n

i=1 µ
Ai

j
(zi)

where µAi
j
(zi) is a

Gaussian membership function, defined by

µAi
j
(zi) = exp


−

(
zi − ξi

j

σi
j

)2

 (6)

where ξi
j indicates the position, and σi

j indicates the
variance of the membership function.
We now can show an important property of the fuzzy



system above. As shown by Wang et al [8], the fuzzy
system has the same pattern as a neural network. Ex-
actly as a neural network, which has powerful abilities
of learning and approximation, a fuzzy system with
the Gaussian membership is capable of uniformly ap-
proximating any well-defined nonlinear function over
a compact set U to any degree of accuracy. The fol-
lowing theorem theoretically supports this claim.

Theorem 1 [15] For any given real continuous func-
tion f on the compact set U ∈ Rn and arbitrary
ε∗, there exists an optimal fuzzy system expansion
F∗(Z) = W ∗T · G(Z) such that

sup
Z∈U

|f −F∗(Z)| ≤ ε∗ (7)

This theorem states that the fuzzy system (5) is a
universal approximator on a compact set. In this pa-
per, we use the terms fuzzy universal approximator or
fuzzy approximator to refer to the fuzzy system. Since
the fuzzy universal approximator is characterized by
parameter vectors W (t), the optimal F∗ does contain
an optimal vector W ∗. Notice that even though fuzzy
approximator is linear with respect to the adjustable
parameter vector W (t), we may, e.g., approximate a
function f(Z) = a + cos(bZT Z) which is not linear in
an independent set of parameters [a, b] [6]. Thus we
are using such a fuzzy approximator which is linear
in the parameters to describe functions which are not
necessarily linear in another set of parameters.

3.2 Design of Controller

Differentiating two sides of tracking error (4) and com-
bining (2), (3) with it yields

Ė(t) = Ẋ − Ẋm

= AmE − B
[
(am − a0)T X + bmr

−a(X)T X − (b0 + b(X))u− d
]

(8)

On the other hand, since Am in (3) is stable, i.e.,
all the eigenvalues Am have negative real parts, for
every positive definite matrix Q ∈ Rn×n, the following
Lyapunov matrix equation

AT
mP + PAm = −Q (9)

has a unique solution P ∈ Rn×n that is also
positive definite [12]. Therefore, it is not dif-
ficult to design a controller like u = (b0 +
b(X))−1

[
(am − a0 − a(X))T X + bmr − d

]
which en-

sures that limt→∞ E(t) → 0 if a(X), b, and d in (8)
are available, because for Lyapunov function v(t) =
1
2ET PE, it is easy to show that v̇(t) ≤ − 1

2ET QE.
However, as mentioned before, the functions a, and
b are supposed to be unknown as well as disturbance
d in this paper. Therefore, the problem is how to
determine a controller u(t) when the system involves
such a kind of uncertainties. Thus we have to approxi-
mate them to proceed with the development. Here the
fuzzy approximator described in the previous subsec-
tion is employed. Let a∗(X) = W∗T

a Ga(X), b∗(X) =
W ∗T

b Gb(X) be the optimal fuzzy approximators of the

unknown functions a(X), b(X), respectively. Accord-
ing to Theorem 1, there are a small positive vector
Φ∗

a ∈ Rn×1, and a small positive value φ∗
b such that,

the errors,

Φa = a(X) − a∗(X) (10)
φb = b(X) − b∗(X) (11)

which are referred to as reconstruction errors, satisfy
the following inequalities,

|Φa| ≤ Φ∗
a (12)

|φb| ≤ φ∗
b (13)

Given that b∗ is the optimal fuzzy approximator of b,
it is reasonable to consider that,

b∗ ≤ b̄ (14)

where the upper bound b̄ is avaliable. We also should
note that the bounds of Φ∗

a, φ∗
b do not need to be

known in this paper. Apparently, the optimal param-
eters, W∗

a and W ∗
b in the optimal fuzzy approxima-

tors are unknown either, therefore, as usual, their es-
timates, denoted as â(X) = ŴT

a (t)Ga(X), b̂(X) =
ŴT

b (t)Gb(X), are adopted, and which will be tuned
based on the tracking error E.

Let’s define a new function,

sφ = ET PB − φ · sat
(

ET PB

φ

)
(15)

where, φ is a little constant which describes the width
of a boundary layer and is used to prevent discontin-
uous control transitions, and sat(·) is saturation func-
tion defined by

sat(x) =




1, if x > 1
x, if |x| ≤ 1

−1, if x < −1
(16)

With the above in mind, now we are ready to develop
our control system. Referring to the controller when
a(X), b(X), and d are known, our adaptive fuzzy con-
troller is determined by,

u = (b0 + b̂(X))−1
[
bmr + (am − a0 − â(X))T X

−(Φ̂T
a |X | + (φ̂b + δs)|u0| + d̂)sat(sφ)

]
(17)

with

δs =
{

0, if Ŵb ∈ S
|b̂(X)| + b̄, otherwise

(18)

S = {Ŵb ∈ Rm | ŴT
b Gb(X) > 0} (19)

where Φ̂a ∈ Rn×1, and φ̂b are the estimates of Φ∗
a, and

φ∗
b , respectively; d̂ is the estimate of the uncertainty

boundary, in symbols d∗; u0 is the one-step-previous
input. The role of adopting Φ̂a, φ̂b is not only to avoid
a prior knowledge about the reconstruction errors, but
also to make compensation for their approximation
errors. Φ̂a, φ̂b, and d̂ are estimated by,

˙̂Φa = −σ(Φ̂a − Φa0) + |sφX | (20)



˙̂
φb = −σ(φ̂b − φb0) + |sφu| (21)

˙̂
d = −σd̂ + |sφ| (22)

where σ > 0 is a leakage constant [16], which counter-
acts a drift of parameter values into regions of insta-
bility in the absence of persistent excitation; Φa0, φa0

are a priori estimates (or information) of Φ̂a, φ̂a, re-
spectively. Of course, such estimates, which’s roles
will be made clear later, shrink to zero if they are not
unavailable.
The adaptive law is synthesized by,

˙̂Wa = −σ
(
Ŵa − Wa0

)
+ sφXGT

a (X) (23)

˙̂
W b =

{
−σ
(
Ŵb − Wb0

)
+ sφuGb(X), if Ŵb ∈ S

0, otherwise
(24)

where Ŵa, and Ŵb are the estimates of W∗
a, and W ∗

b ,
respectively; correspondingly, Wa0, and Wb0 are a pri-
ori estimates of Ŵa, and Ŵb, respectively.

Remark 3 As a matter of fact, it does not need the
switching function(18), in the sense of simplify-
ing the approach by using the information of b̄
in (14) in both inside and outside of S. How-
ever, such an information, b̄, is often not being
known well, so it is usually set large enough for
the reason of stability. Here in this paper, the in-
formation is only used in outside S. It means we
do not want to use it unless the system stability
is threatened. In addition, the switching adap-
tive law (24) serves for both purposes of avoiding
the risk of a zero-denominator calculation in (17),
and system stability that will be shown later.

3.3 Analysis of System Stability

We begin the stability analysis by defining a Lyapunov
function as

v =
1
2


ET PE +

n∑
i=1

N∑
j=1

w̃2
aij

+W̃T
b W̃b + Φ̃T

a Φ̃a + φ̃2
b + d̃2

)
(25)

where W̃a =
[
w̃aij

]
n×N

, and

w̃aij = ŵaij − w∗
aij

(26)

W̃b = Ŵb − W ∗
b (27)

Φ̃a = Φ̂a − Φ∗
a (28)

φ̃b = φ̂b − φ∗
b (29)

d̃ = d̂ − d∗ (30)

Differentiating the first right-hand term, and substi-
tuting (8)-(11), (28), and (29) into which yields,

ET PĖ

= −1
2
ET QE − ET PB

[
(am − a0 − â(X))T X + bmr

−ΦT
a X + ãT X − (b0 + b̂(X))u − φbu + b̃u − d

]
(31)

where ã = â(X)−a∗(X), b̃ = b̂(X)−b∗(X). As shown
in (15), since φ is a constant with small value, a gap
between sφ and ET PB is within a small magnitude.
Also, the gap can be covered by disturbance d. In
other word, the gap can be viewd as a part of the
disturbance, which is unknown but dealt with by an
adaptive law in this paper. Under this consideration,
(31) can be rewritten as

ET PĖ

= −1
2
ET QE − sφ

[
(am − a0 − â(X))T X + bmr

−ΦT
a X + ãT X − (b0 + b̂(X))u − φbu + b̃u − d

]
(32)

Taking the time derivative of the Lyapunov function
of (25), and substituting (31) into it, we have,

v̇ ≤ −1
2
ET QE − sφ

[
(am − a0 − â(X))T X

+bmr + ãT X − (b0 + b̂(X))u + b̃u
]

+|sφ|Φ∗T
a |X | + |sφ|φ∗

b |u| + |sφ|d∗

+
n∑

i=1

m∑
j=1

w̃aij
˙̂waij + W̃T

b
˙̂

W b

+Φ̃T
a

˙̂Φa + φ̃b
˙̂
φb + d̃

˙̂
d (33)

Substituting (17), (20)-(23) into (33), it follows that

v̇ ≤ −1
2
ET QE − sφb̃u

−(Φ̂T
a |X | + (φ̂b + δs)|u0| + d̂)|sφ|

+|sφ|Φ∗T
a |X | + |sφ|φ∗

b |u| + |sφ|d∗

−σ

n∑
i=1

m∑
j=1

w̃aij(ŵaij − waij0) + W̃T
b

˙̂
W b

−σΦ̃T
a (Φ̂a − Φa0) + Φ̃T

a |sφX |
−σφ̃b(φ̂b − Φb0) + φ̃b|sφu|
−σd̃d̂ + d̃|sφ| (34)

where the fact that sφ ·sat(sφ) = |sφ| is used. Here, let
us pay attention to block, (φ̂b + δs)|u0| + d̂, where u0

is the one-step-previous input and d̂ is the estimate of
the system uncertainty d∗. Although it is natural to
consider that there exists a gap between the one-step-
previous input u0 and the current input u, the gap in
the term above can be seen a part of d∗ and be covered
by d̂ which is tuned by adaptive law (22) based on the
tracking error E. Therefore, it is reasonable to regard
the block as (φ̂b + δs)|u|+ d̂ in terms of the boundary-
free uncertainty, and consequently, (38) becomes,

v̇ ≤ −1
2
ET QE − sφb̃u − δs|sφu|

−σ

n∑
i=1

m∑
j=1

w̃aij(ŵaij − waij0) + W̃T
b

˙̂
W b

−σΦ̃T
a (Φ̂a − Φa0) − σφ̃b(φ̂b − φb0) − σd̃d̂

(35)



We now consider two cases, (a) inside S and (b) out-
side S, and show the system stability and tracking
ability in both cases.

(a) In the case of inside S:
(35) becomes

v̇ ≤ −1
2
ET QE − σW̃T

b (Ŵb − Wb0)

−σ

n∑
i=1

m∑
j=1

w̃aij(ŵaij − waij0)

−σΦ̃T
a (Φ̂a − Φa0) − σφ̃b(φ̂b − φb0) − σd̃d̂

(36)

where δs = 0, and the upper part of adaptive law in
(24) are used. Now, let’s pay attention to the second
right-hand term in above expression.

W̃T
b (Ŵb − Wb0)

= W̃T
b

(
W̃b + W ∗

b − Wb0

)
= W̃T

b W̃b +
(
Ŵb − W ∗

b

)T (
Ŵb − W̃b − Wb0

)
= W̃T

b W̃b +
(
Ŵb − Wb0 − W ∗

b + Wb0

)T

·
(
Ŵb − Wb0 − W̃b

)
= W̃T

b W̃b +
(
Ŵb − Wb0

)T (
Ŵb − Wb0

)
−
(
Ŵb − Wb0

)T

W̃b − (W ∗
b − Wb0)

T (W ∗
b − Wb0)

≥ W̃T
b W̃b −

(
Ŵb − Wb0

)T

W̃b

− (W ∗
b − Wb0)

T (W ∗
b − Wb0)

thus,

W̃T
b (Ŵb − Wb0)

≥ 1
2
W̃T

b W̃b −
1
2

(W ∗
b − Wb0)

T (W ∗
b − Wb0)

(37)

Dealing with the rest terms except first term in the
right-hand in (36) by the same way that (37) resulted,
it leads to that

v̇ ≤ −1
2
ET QE − σ

2
W̃T

b W̃b −
σ

2

n∑
i=1

m∑
j=1

w̃2
aij

−σ

2
Φ̃T

a Φ̃a − σ

2
φ̃2

b − σ

2
d̃2 + ε

≤ −1
2
λmin(Q)ET E − σ

2
W̃T

b W̃b −
σ

2

n∑
i=1

m∑
j=1

w̃2
aij

−σ

2
Φ̃T

a Φ̃a − σ

2
φ̃2

b − σ

2
d̃2 + ε

= −1
2
λmin(Q)

λmax(P )
λmax(P )

ET E − σ

2
W̃T

b W̃b −
σ

2

n∑
i=1

m∑
j=1

w̃2
aij

−σ

2
Φ̃T

a Φ̃a − σ

2
φ̃2

b − σ

2
d̃2 + ε

≤ −1
2

λmin(Q)
λmax(P )

ET PE − σ

2
W̃T

b W̃b −
σ

2

n∑
i=1

m∑
j=1

w̃2
aij

−σ

2
Φ̃T

a Φ̃a − σ

2
φ̃2

b −
σ

2
d̃2 + ε

≤ −αv + ε (38)

where,

α = min
(

λmin(Q)
λmax(P )

, σ

)
(39)

ε =
σ

2

n∑
i=1

m∑
j=1

(w∗
aij − waij0)2

+
σ

2
(W ∗

b − Wb0)
T (W ∗

b − Wb0)

+
σ

2
(Φ∗

a − Φa0)
T (Φ∗

a − Φa0)

+
σ

2
(φ∗

b − φb0)
2 +

σ

2
d∗2 (40)

which implies,

v ≤ e−α(t−t0)v(t0) +
∫ t

t0

e−α(t−τ)εdτ

=
(
v(t0) +

ε

α

)
e−α(t−t0) +

ε

α
(41)

Therefore, all signals in (25), which also are all signals
involved in the system, are bounded. Besides, from
(25) and (41), we can get that there exists T such
that for t ≥ T , E(t) satisfies

‖E(t)‖ ≤ 1
λmin(P )

√
2ε

α
(42)

which implies the tracking error vector E(t) is uni-
formly bounded, and tends to a ball centered at the

origin with radius 1
λmin(P )

√
2ε
α .

(b) In the case of outside S:
(35) becomes

v̇ ≤ −1
2
ET QE − sφb̃u − (|b̂(X)| + b̄)|sφu|

−σ

n∑
i=1

m∑
j=1

w̃aij(ŵaij − waij0)

−σΦ̃T
a (Φ̂a − Φa0) − σφ̃b(φ̂b − φb0) − σd̃d̂

≤ −1
2
ET QE − σ

n∑
i=1

m∑
j=1

w̃aij(ŵaij − waij0)

−σΦ̃T
a (Φ̂a − Φa0) − σφ̃b(φ̂b − φb0) − σd̃d̂

(43)

where δs = |b̂(X)|+ b̄ in (19), and ˙̂
W b = 0 in (24) are

used. Straightforwardly with same manner as in (38),
we have,

v̇ ≤ αv + ε (44)

where,

ε =
σ

2

n∑
i=1

m∑
j=1

(w∗
aij − waij0)2

+
σ

2
(Φ∗

a − Φa0)
T (Φ∗

a − Φa0)

+
σ

2
(φ∗

b − φb0)
2 +

σ

2
d∗2 (45)

Clearly, (41), and (42) are satisfied as well in this case.



Remark 4 From (40), (45), and (42), we can see that
the better a priori estimates for Φ̂a, φ̂b and so
forth, the smaller tracking error we can get. Note
that such a kind of a priori estimates is defferent
from the assumption on the optimal fuzzy approx-
imators.

Remark 5 The bound of E(t) also depends on the
leakage constant σ and P,Q in (9), therefore, the
magnitude of bound of E(t) can be made arbi-
trarily small by adjusting the parameters σ, P ,
and Q.

The results achieved in this paper can be summarized
in a theorem as follows:

Theorem 2 If the plant (1) subject to the Assump-
tion in section 1 is controlled by (17)-(19) with the
adaptive law (20)-(24), then tracking error, between
the states of the considered system and its reference
model (3), will be uniformly bounded, also the bound
can be made arbitrarily small by choosing appropri-
ately control parameters, while maintaining all signals
in the system asymptotically stable.

4 Simulation
In order to clarify the proposed design of procedure,
we apply the adaptive fuzzy controller developed in
the previous section to control the following nonlinear
system:[

ẋ1

ẋ2

]
=

([
0 1
−1 −2

]
+
[

0 0
0 a

])[
x1

x2

]

+
([

0
1

]
+
[

0
b

])
u +

[
0
d

]
(46)

where,

a =
1 − exp(−x2)
1 + exp(−x2)

b = 0.5 sin(x1), d = 0.5 sin(t)

Its reference model is given by[
ẋ1m

ẋ2m

]
=
[

0 1
−4 −2

] [
x1m

x2m

]
+
[

0
1

]
sin(t) (47)

For the reference model above, and a given positive
definite matrix,

Q =
[

16 0
0 4

]
(48)

there is a positive definite matrix that is the solution
of (9),

P =
[

12 2
2 2

]
(49)

Apparently, in the plant there are known parts A0 =[
0 1
−1 −2

]
, b0 = 1, and unknown parts A =[

0 0
0 a

]
and b. For the known parts, they are used in

the controller (17) directly, while unknown functions

a, b related with the unknown parts will be treated us-
ing the fuzzy approximator as mentioned in section 3.
Since the unknown functions a, and b are the functions
with respect to x2, and x1, respectively, the variables
in the antecedent of fuzzy approximators are x2, and
x1, respectively as well:

Rj : IF x1 is Aj THEN b is w1j

or
Rj : IF x2 is Aj THEN a is w2j

where j is rule’s number; Aj is a fuzzy set, and w·j is
a singleton value. In this simulation, we adopt seven
fuzzy sets over the domains of x1, and x2. Conse-
quently, it yields seven fuzzy rules at most, where each
fuzzy rule Rj (j = 1, 2, . . . , 7) has a consequent w·j .
Furthermore, seven fuzzy sets are given as in Fig.1,
w·j is initially assigned 1 and to be tuned by adaptive
law.
Control input is determined by (17-19) with adaptive
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Figure 1: Membership functions in antecedent

law (20)-(24), where σ = 0.1, and all the prior esti-
mates for Φa, φb, Wa, and Wb are taken as 0 in order
to show that we have no any such a prior knowledge
on the system. For the upper bound b̄, in this simu-
lation fuzzy approximator b∗(X) is used to deal with
unknown function b = 0.5 sin(x1), therefore the up-
per bound is taken as b̄ = 0.5. In additon, the initial
states for the plant and the reference model are taken
as x1(0) = 3, x2(0) = 2, x1m(0) = 1, x2m(0) = −1,
and all initial values for the adaptive law are taken as
0.5.
Simulation results are shown in Figs.2-4. Figs.2-3 de-
picted the evolutions of x1, x2, and their desired states
from the reference model, in which good tracking per-
formance is observed in spite of the fact that there
is a sin-curved uncertainty (disturbance) in the plant.
The amount of control effort required to achieve the
above level of the performance is illustrated in Fig.4,
where the boundary layer is taken φ = 0.01.

5 Conclusion
In this paper, we proposed a fuzzy controller for a
class of reference model adaptive control systems with
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Figure 2: Evolutions of states x1, and xm1

0 5 10 15 20 25 30
-4

-3

-2

-1

0

1

2

t (sec.)

x
2

 
a
n
d
 
x
m
2

x
m2

 

x
2
 

Figure 3: Evolutions of states x2, and xm2

uncertainties. Shortly, the main issues we considered
here were: (1) when using the fuzzy approximator to
deal with some unknown functions in the plant to be
controlled, the known parts, if any, in the functions
are utilized to the maximum even it was a tough task
to deal with the control gain in such a way; (2) re-
garding the unknown parts to be approximated, the
prior knowledge, if any, about the parts also should
be used as much as possible, since, as mentioned in
remark 4, the tracking error is directly related with
such knowledge.
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