
An Efficient XML Index Technique with Relative Position Coordinate 
 

Tackgon Kim, Wooseang Kim 
Dept. of Computer Science, Kwangwoon Universicy 

Wolkye-dong, Nowon-gu, Seoul, Korea 

 
Abstract: - Recently, a lot of index techniques for storing and querying XML document have been studied so far 
and many researches of them used coordinate-based methods. But update operation and query processing to 
express structural relations among elements, attributes and texts make a large burden. In this paper, we propose an 
efficient index technique with Relative Position Coordinate (RPC). It supports containment queries using SQL 
statements and data management operations. It does not cause serious performance degradations even if there are 
frequent update operations because it maintains relative relationship of XML tree. Overall, the performance could 
be improved by reduction of the number of times for traversing nodes. 
 
Key-Words: - XML Index, Relative Position Coordinate, RPC, Containment Query 
 
1   Introduction 
 

The existing multimedia applications use for the 
limited area of the simple play for the images, audios, 
and videos. But multimedia applications have been 
expanded into services through the complex practical 
uses of multimedia resources with increases of the 
explosive internet popularization and various demands 
of internet users these days. XML[1], which is derived 
from SGML[2] through recommendations of 
W3C(World Wide Web Consortium), comes up as a 
standard language, which exchanges the data through 
internet and still keeps the interoperability, in recent 
years. 

There are many applications with abundant 
representation ability in XML languages. It is the trend 
to use XML for expression of all the data in business 
application program. Therefore, there are steady 
efforts for the study to store and retrieve the XML 
documents in the database efficiently and it needs to 
provide any methods to preserve not only the contents 
also structural and positional information in the XML 
documents. 

In this paper, we propose an index technique that 
expresses relative structural information with RPC 
using RDBMS. RPC method maintains relative 
relationship in each nodes in XML tree. We will show 
RPC method that can efficiently perform storing and 
querying XML document through the proposed 
method. 

The RPC method uses relative positions for each 
node which is consisted of parent node’s position, an 
order number as offset on sibling nodes, and identifier 
of leaf node’s full-path. So each node of XML tree can 

be expressed relative relationship each other. And we 
will use update operators for efficient XML data 
management with relative position coordinate. 

This paper is organized as follows. In chapter 2, we 
review related works about index techniques of XML 
documents. In chapter 3, we introduce an efficient 
index technique with Relative Position Coordinate. In 
chapter 4, we present update operations for proposed 
index technique, and in chapter 5, we explain query 
examples for containment queries. In chapter 6, we 
show the performance evaluation between the 
proposed technique and existing coordinate-based 
technique. Finally we make a conclusion in chapter 7. 
 
2   Related Works 
 

Index techniques for XML documents are described 
in a lot of researches. [3] explains position-based 
indexing and path-based indexing to access XML 
document by content, structure, or attributes. 

In position-based indexing, queries are processed 
by manipulating the range of offsets of words, 
elements or attributes. GCL position-based model was 
proposed in [4]. GCL is based on a data structure 
called a concordance list, which consists of text 
intervals called extents. Each extent is described by a 
start position and length. It is possible to process the 
query to express containment relation, thanks to the 
description for the range of a position. 

In path-based indexing, the location of words is 
expressed as structural elements and the paths in tree 
structures are used for the processing of query. In 
order to determine the position of a word within a 
document, it is necessary to construct an encoding of 



the path of the element names from the root of the 
document to the leaf node containing the word. And 
then, for each word occurrence, the inverted list 
includes a representation of the path to that word. 

In [5], data structure for indexing XML documents 
based on relative region coordinates is used. Region 
coordinates describe the location of content data in 
XML documents. They refer to start and end points of 
text sequences in XML documents. Region 
coordinates are adjusted by offsets relative to the 
corresponding region coordinate of the parent node in 
the index structure. 

In [6][7], new technique based on bitmap indexing 
was introduced. XML documents are represented and 
indexed using a bitmap indexing technique. They 
define the similarity and popularity of the available 
operations in bitmap indices and propose a method for 
partitioning a XML document set. 2-dimensional 
bitmap index is extended to a 3-dimensional bitmap 
index, called BitCube. They define statistical 
measurements and correlation coefficient. BitCube 
proved eminent performance in performance 
assessment with systems such as existent XQEngine, 
XYZFind already through the fast search speed. 

[8] explains about index graph that changes 
structure to find a fast route that is used often using 
data mining method. It has a problem that it must 
update the index graph every time the query processes 
fundamentally inaccurate index query. 
 
3   Proposed Index Model with Relative 
Position Coordinate 
 

In this section, we introduce our proposed index 
model, and how to process relative position coordinate 
for index. 
 
3.1 Table schemas for index 
 

We use the table schema in figure 1 in order to store 
positional and relationship of nodes. 

Schemas for relative structural information consist 
of six tables: ElementType, ElementNode, Path, 
PathMap, Attribute, Text. 
 

ElementType {etID, etName, level} 
ElementNode {docID, etID, enID, parentID, level, offset} 
Path {docID, pathID, etID} 
PathMap {docID, pathID, enID} 
Attribute {docID, pathID, attrName, attrValue} 
Text {docID, pathID, textValue} 

Fig.  1  Table schemas 

The ElementType table indicates information about 
distinct element nodes in XML document with etID, 
etName, level fields. etID field is a unique ID of 
distinct element node, etName is element name, and 
level is a depth value of XML tree. 

The ElementNode table keeps relative position 
information about each nodes. This table consists of 
docID, etID, enID, parented, level, offset fields. The 
docID field is a XML document identifier, etID is a 
ElementType table’s etID value, enID is a element’s 
identifier in a XML document, level is a depth value, 
and offset is a order number of sibling nodes. 

The Path table stores information about full paths 
from root to leaf. Fields are docID, pathID which is 
path identifier, and etID which is a leaf element node’s 
etID. 

The PathMap table indicates information about how 
connect each node in ElementNode table by using 
Path table information. Fields are docID, pathID, 
enID. 

The Attribute and Text tables store each 
identification and positional information about 
attribute and text contents of elements.  
 
3.2 Description of index technique with 

relative position coordinate 
 

To define proposed index technique, we consider an 
XML document D rooted at r. Let’s denote P as a 
parent node of the tree and C1, C2, …, Cn are child 
nodes of P node. 
 
Definition 1. (Relative Position Coordinate) 
Relative Position Coordinate method expresses an 
relative relationship of nodes in XML document. 
Address of the child node among sibling nodes C1, C2, 
…, Cn of an XML document are combinations of 
numbers (P, O, L), where P is parent node’s enID, O is 
offset for child node, and L is node’s depth in XML 
tree with root node’s level is 0. So, one node has 
relative information which are relationship of parent 
node, order number of sibling nodes, and level. 
 
Definition 2. (Offset) Offsets among sibling nodes are 
given to a sequence order like {0, 1, 2, …, n} as 
described in figure 2. 
 
Example 1. In case we assume that ElementNode’s 
identifier of parent node P is (1), and the number of 
child nodes n is (5). The offsets of child nodes C1, C2, 
C3, C4, C5 are {0, 1, 2, 3, 4}. That is, the ElementNode 



table’s record of child nodes C1, C2, C3, C4, C5 in 
figure 2 are (1,0,2), (1,0,3), (1,0,4), (1,0,5), (1,0,6). 
 

 
Fig.  2  An example tree and ElementNode table’s value 
list 
 
Definition 3. (Path Identifier, pathID) The pathID 
field which is a path identifier, is used to identify full 
path from root node to leaf node. In case we assume 
that one path from root to leaf with leaf node’s level is 
d, is consisted of N0 (root node), N1, …, Nd. In 
PathMap table, we can use to determine node’s 
relationship as follow. 
 
(0 ≤ enIDlevel ≤ d) AND (enIDpathID = PathMappathID) (1) 
 
Example 2. In figure 2, parent node P’s node 
identifier is (1), and if C1, C2 is same type of element, 
the pathID is expressed in figure 3 as follow. 
 

node pathID etID docID enID list 
C1 1 1 1 2, 1 
C2 2 1 1 3, 1 
C3 3 2 1 4, 1 
C4 4 3 1 5, 1 
C5 5 4 1 6, 1 

Fig.  3  An example of pathID 
 
4   Operations for Index Technique with 
Relative Position Coordinate 
 

We consider update of XML documents with insert, 
update, remove activities. We use five update 
operations in figure 4 in order to manage of XML 
documents with extending the research of [9]. 
 

operation description 
InsertBefore (ref, content) Insert a node before ref sibling node
InsertAfter (ref, content) Insert a node after ref sibling node 
Appen (ref, content) Insert a node of ref node’s child 
Remove (ref) Remove ref node and sub nodes 
Update (ref, content) Update a node’s data 

Fig.  4  Update operations 
 
4.1 Access of nodes 
 

Access of nodes by proposed index technique is for 
search of XML document that is processing relevant 

node ultimately. This paper examined method that can 
search various containment relations between nodes 
using simple query language through chapter 5. 
 
4.2 Insertion of a node 
 

Figure 5 and figure 6 show pseudo algorithm for 
changing index structure from the insertion of a node. 
 
■ InsertBefore | InsertAfter (ref_node, content_node) 
1. Get ref_node’s information 
    (docID, enID, parentID, level, offset) 
2. Set inserted node’s offset from ref_node 

content_nodeoffset = ref_nodeoffset ± 1 
3. Compare content_node and all sibling nodes 

If ( sibling_nodeoffset ≥ content_nodeoffset ) 
sibling_nodeoffset = sibling_nodeoffset + 1 

Update ElementNode table. 
4. Update Path, PathMap table as follows. 

Create a new path value for inserted node. 
Assign path value from ref_node’s value except itself

Fig.  5  Pseudo algorithm for insertion operation 
between sibling nodes 
 
■ Append (ref_node, content_node) 
1. Get ref_node’s information 
    (docID, enID, parentID, level, offset) 
2. Set inserted node’s offset from ref_node 

content_nodeparentID = ref_nodeenID 
3. Check child node existence 

If ref_nod has child node(s) 
content_nodeoffset = ref_nodeNumberofSiblingNodes + 1 

else 
Content_nodeoffset = 0 

Update ElementNode table. 
4. Update Path, PathMap tables as follows 

Create a new path value for inserted node. 
Assign path value from ref_node’s value except itself

Fig.  6  Pseudo algorithm for insertion operation as 
child node 
 
Example 3. If C6 node is inserted between C2 and C3 
as figure 6, pseudo algorithm in figure 4 will assign 
enID and offset value for C6 node. and the result is in 
figure 7 and figure 8 as follows. 
 

 
Fig.  7  ElementNode list after insert operation 
 

node pathID etID docID etID list 
C1 1 1 1 2, 1 
C2 2 1 1 3, 1 
C3 3 2 1 4, 1 
C4 4 3 1 5, 1 
C5 5 4 1 6, 1 
C6 6 5 1 7, 1 

Fig.  8  Path table after insert operation  



4.3 Deletion of nodes 
 
The deletion operation of nodes processes using 

pseudo algorithm in figure 9. 
 
■ Remove (ref_node) 
1. Get ref_node’s information 
    (docID, enID, parentID, level, offset) 
2. Find sub nodes (including child, descendent)  

If (ref_nodepathID == subnodepathID) 
and (ref_nodelevel < subnodelevel) 

Remove sub nodes in the ElementNode, Path,  
PathMap tables 

4. Remove ref_node from ElementNode table. 
5. Update Path, PathMap tables. 

Fig.  9  Pseudo algorithm for deletion operation 
 
4.4 Update nodes 
 

Because it is stored the field value as the node’s 
information in table of relational database in proposed 
index technique, the existing value performs through 
process that replaces existent value by new value 
simply at update. The update operation can process 
with pseudo algorithm in figure 10. 
 
■ Update (ref_node, content) 
1. Get the ref_node’s information  
    (docID, pathID) 
2. Get the ref_node’s value on the Text or Attribute table
3. Get the ref_node’s text value or attribute value 
4. Change the value of ref_node by text of ‘content’ 
5. Update Text table or Attribute table. 

Fig.  10  Pseudo algorithm for update operation 
 
5   Query Processing 
 

In this section, we use containment relationship 
queries[10][11] to evaluate index technique based on 
relative position coordinate such as direct containment 
query, indirect containment query, perfect 
containment query, proximity query. Containment 
queries are based on containment relationships 
between elements, attributes, and their contents. These 
queries are path expressions, Boolean and proximity 
queries. We use examples to illustrate these queries 
and then show how to use the proposed index 
technique and the relational database schemas to 
process these containment queries. 
 
5.1 Direct containment query 
 
Definition 8. (Direct containment) Direct 
containment relationship query indicates the query 
that is consisted of direct containment relationships 
among elements, attributes, and texts. The symbol ‘/’ 

indicates direct containment (i.e. parent-child 
relationship). This query is processed by followed 
condition. 
 
ParentNodeenID = ChildNodeparentID AND   
ParentNodepathID = ChildNodepathID  (2) 
 
Example 4. Figure 11 represents the sample SQL 
statement for expressing direct containment 
relationship query where ‘movie’ for parent node, and 
‘title’ for child node. 
 
Query : movie/title 
 

SELECT enC.docID 
FROM ElementType etP, ElementNode enP, Path pP, 
 ElementType etC, ElementNode enC, Path pC 
WHERE etP.etName = 'movie' and etP.etID = enP.etID and 
 etC.etName = 'title' and etC.etID = enC.etID and 
 enP.docID = enC.docID and enP.enID = enC.parentID 

Fig.  11  Direct containment query 
 
5.2 Indirect containment query 
 
Definition 9. (Indirect containment) Indirect 
containment relationship query indicates the query 
that is consisted of indirect containment relationship 
among elements, attributes, and texts. The symbol ‘//’ 
indicates indirect containment relation (i.e. 
ancestor-descendent relationship). The query is 
processed by followed condition. 
 
AncestorNodepathID = DescendentNodepathID (3) 
 
Example 5. Figure 12 describes the sample SQL 
statement for searching indirect containment 
relationship query where ‘movie’ for ancestor node, 
and ‘title’ for descendent node.  
 
Query : movie//title 
 

SELECT distinct (pmD.docID) 
FROM ElementType etA, ElementNode enA, Path pA, 
 ElementType etD, ElementNode enD, Path pD, 
 PathMap pmA, PathMap pmD 
WHERE etA.etName = 'movie' and etA.etID = enA.etID and 
 etD.etName = 'title' and etD.etID = enD.etID and 
 pmA.enID = enA.enID and pmA.docID = enA.docID and
 pmD.enID = enD.enID and pmD.docID = enD.docID and
 pmA.pathID = pmD.pathID and pmA.docID = pmD.docID

Fig.  12  Indirect containment query 
 
5.3 Complete containment query 
 
Definition 10. (Complete containment) Complete 
containment relationship query indicates the query 



that is consisted of complete containment relationship 
among elements, attributes, and texts. It can be 
executed to compare the text value of a node and the 
parameter in the query condition 
 
Example 6. Figure 13 shows the example of complete 
containment query. It selects all documents that have 
‘TOPGUN’ as text value of a node. 
 
Query : //title=’TOPGUN’ 
 

SELECT Path.docID 
FROM ElementType et, ElementNode en,  
 Path p, PathMap pm, Text t 
WHERE et.etName='title' and et.etID = en.etID and 
 en.etID = pm.etID and  
 pm.pathID = p.pathID and pm.docID = p.docID 
 t.textValue = 'TOPGUN' and 
 t.pathID = p.pathID and t.docID = p.docID and 

Fig.  13  Complete containment query 
 
5.4 Proximity query 
 
Definition 11. (Proximity) Proximity query indicates 
the query that is consisted of two terms and its distance 
k between them. In this paper, we apply the distance 
between two terms which is the number of elements 
between each elements has terms. This query is 
expressed by followed condition. 
 
Distance (term1, term2) < k 
Distance = (Ascendentlevel – Descendent1level)  
+ (Ascendentlevel – Descendent2level)  (4) 
 
Example 7. Figure 14 represents the sample SQL 
statement for expressing proximity query where 
distance between ‘title’ node and ‘studio’ node is less 
than ‘5’. 
 
Query : Distance (‘title’, ‘studio’) < 5 
 

SELECT en2.docID 
FROM ElementType et1, ElementNode en1, 
 ElementType et2, ElementNode en2 
WHERE et1.etName = 'title' and et1.etID = en1.etID and 
 et2.etName = 'studio' and et2.etID = en2.etID and 
 en1.docID = en2.docID and 
 (2 * { 
 SELECT max (pm2.level) 
 FROM ElementType et1, ElementNode en1, PathMap pm1, 
  Elementtype et2, ElementNode en2, PathMap pm2, 
 WHERE et1.etName = 'title' and et1.etID = en1.etID and 
  et2.etName = 'studio' and et2.etID = en2.etID and 
  pm1.enID = en1.enID and pm1.docID = en1.docID and
  pm2.enID = en2.enID and pm2.docID = en2.docID and
  pm1.docID = pm2.docID and pm1.enID = pm2.enID 
 } - en1.level + en2.level) < 5) 

Fig.  14  Proximity query 

6   Performance Evaluation 
 

In this section, we show the comparison between 
conventional coordinate-based index techniques and 
proposed index technique. Proposed algorithm 
reducees the workload to perform the comparison and 
update operation when it retrieves and indicates data 
in the relational tables for these indices. 
 
6.1 Comparative operation for containment 

query 
 

In the conventional coordinate-based index 
technique, it uses two position values, wicha are 
relevant to start and end position, to represent the 
positional region of the node. In the method, it should 
compare the pairs of start point and end point of the 
two nodes to check the containment relationship 
between the nodes. In the proposed index technique, it 
can perform containment relationship query along the 
little amount of comparative operation because it 
compares just containment relationship of pathID 
between ancestor node and descendent node. Figure 
15 shows the difference of comparison times for 
verifying the containment relationship between 
conventional coordinate-based index technique and 
proposed index technique. 
 

 
Fig.  15  Comparative operation for indirect 
containment query 
 
6.2 The number of updated nodes 
 

In the XML tree, according to growing the depth 
and the width, the number of nodes is to be increased 
in a geometrical progression. In the situation that 
update of an offset data affects other nodes by the 
insertion of a node. In the worst case, all of the 
position data should be reconstructed and it is caused 
lots of cost for the operation. 

Let XML tree is balanced tree, depth is from 0 to k, 



and number of sibling nodes is s, in case using 
coordinate-based index and proposed index, the 
accumulative number of the node of which offset data 
is changed from the insertion and update operations 
are as follows. 
 
6.2.1   Insert operation on leaf nodes  
 
Figure 16, figure 17 shows the comparison of the 
number of insert operation per node in accordance 
with increasing the number of node among the 
different index techniques. In case of RRC, ARC 
method, the number of node, which participate in 
update operation, increase at the ratio of geometric 
progression based on [5]. But RPC method is better 
than others because it only change sibling nodes.  
 
ARC method = 

1 1
1

1 ( 2)
2

kk m
j jj j

m
s s k

= =
=

+ +∑∏ ∏  (5) 

RRC method = 
1

1

1 ( 2)
2

kk
j jj

j
s s k

=
=

+ +∑∏   (6) 

RPC method = 1

1

s
k

i
s i−

=

×∑     (7) 

 

 
Fig.  16  Insert operation on leaf nodes according to 
increase the number of sibling nodes with depth is 5 

 

 
Fig.  17  Insert operation on leaf nodes according to 
increase the depth of XML tree with number of sibling 
nodes is 5 
 

6.2.2   Update operation on leaf nodes 
 
Figure 17 shows the comparison of the number of 
update operation per node in accordance with 
increasing the number of node among the different 
index techniques. In case of RRC, ARC methods are 
same with Insert operation. But RPC method only 
changes a text field value. 
 

ARC method = 
1 1

1

1 ( 2)
2

kk m
j jj j

m
s s k

= =
=

+ +∑∏ ∏  (8) 

RRC method = 
1

1

1 ( 2)
2

kk
j jj

j
s s k

=
=

+ +∑∏   (9) 

RPC method = constant    (10) 
 

 
Fig.  18  Update operation on leaf nodes according to 
increase the number of sibling nodes with depth is 5 
 
7   Conclusion 
 

We proposed an index technique with relative 
position coordinate to express relative relationship 
between nodes in a XML document. It is an efficient 
index technique that simplifies the comparative 
objects applied to a search query as containment query 
with relational database.  

In addition, we consider update operations to 
manage XML documents easily, and these operations  
which are insert and update operations, shows good 
performance. 
 
References: 
[1] T. Bray, et al, “Extensible Markup Language (XML) 1.0 

(Second Edition),” 
http://www.w3.org/TR/2000/REC-xml-20001006 

[2] ISO, “Information Processing - Text and Office System 
- Standard Generalized Markup Language (SGML),” 
ISO/IEC 8879, Oct. 15, 1986. 

[3] R. Davis, T. Dao, J. Thom, J. Zobel, “Indexing 
documents for queries on structure, content and 
attributes”, In International Symposisium on Digital 
Media Information Base (DMIB ’97), Nov. 1997. 



[4] C. Clarke, G. Cormack, F. Burkowski, "An algebra for 
structured text search and a framework for its 
implementation," The Computer Journal, 1995.  

[5] D. Kha, M. Yoshikawa, S. Uemura, "An XML indexing 
structure with relative region coordinate," ICDE'2001, 
April 2001. 

[6] J. Yoon, V. Rahgavan, and V. Chakilam, “BitCube: 
Clustering and Statistical Analysis for XML 
Documents”, 13th International Conference on 
Scientific and Statistical Database Management, 
Virginia, July 2001. 

[7] J. Yoon, V. Rahgavan, and V. Chakilam, “BitCube: A 
Three-Dimensional Bitmap Indexing for XML 
Documents”, Journal of Intelligent Information System, 
Vol.17, pp.241-254, 2001 

[8] C. Chung, J. Min, K. Shim, “APEX: An Adaptive Path 
Index for XML Data”, In Proceedings of the ACM 
SIGMOD International Conference on the Management 
of Data, 2002:121-132 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[9] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, 
Daniel S. Weld, “Updating XML”, ACM SIGMOD, 
Santa Barbara, California, USA, May, 2001, 
pp413-424. 

[10] C. Cheng, J. Naughton, D. DeWitt, Q. Luo, and G. 
Lohman, “On supporting containment queries in 
relational database management system”, ACM 
SIGMOD, 2001. 

[11] C. Seu, S. Lee, H. Kim, “An Efficient Inverted Index 
Technique based on RDBMS for XML Documents”, 
KICS:Database Vol 30, No 1, Feb., 2003. 

[12] J. Song, W. Kim, “Extensible index technique for 
storing and retrieving XML documents”, CIT ‘2004, 
pp280-287, Sep., 2004. 

 


