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Abstract: The purpose of this paper is to design and formalize the “Observational Model” of Genomic which is the mathematical model based on Fuzzy Relation, System Theory, and Factor-Space Theory.
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1  Introduction
  Genomic is the field of biological research taking us from the DNA sequence of a gene to the structure of the product for which it codes (usually a protein) to the activity of that protein and its function within a cell, the tissue and, ultimately,  the organism. The two central questions are:

· What do genes do?

· How do genes interact? 

System theory is a family of methodologies for the analysis of organization and behaviour through  mathematical modeling. A typical system theoretic approach to the two questions is to 

· Cluster genes with known biological function according to similarity in pattern of expression.
· Classify genes with unknown function according to their similarity to the prototypes obtained from the clustering.
· Identify the parameters of a gene-network (dynamic) model using the cluster prototypes obtained previously.
The challenges for a system theoretic approach are:

· Very large number of the variables (thousands of genes).

· Very small number of the measurements. 

· Data are collected from a dynamic process under “closed-loop control”.

· The processes usually are non-linear and time-variant.

· Information fusion of transcriptome and proteome data is non-trivial.

As the focus in genomics is shifting from molecular characterization to understanding functional activity, system theory is going to play an increasingly important role in providing biologists with better tools to extract information from data, as well as supporting new ways of thinking to characterize molecular systems in a general way, and quite independently of their physical and chemical constitution.

The relevance, applicability and importance of fuzzy set theory and fuzzy logic is generally linked to successful applications in the domain of engineering, especially where subjective notions have to be modeled and matched with abstract data structures. Examples of this include applications in the nonlinear control, expert systems and pattern recognition. The purpose of this paper is to outline the conceptual foundations of a framework, based on the mathematics of fuzzy sets, system- theoretic epistemology integrating aspects of Arthur Schopenhauer’ philosophy, Rober Rosen’system theory and Peizhuang Wang’s factor-space theory [23,16] that can be successfully employed to model some of the most complex phenomena in molecular biology.
2 Designing the Model
  Microarray technology provides us with gene expression measurements on the transcriptome level. A typical experiment can provide measurements of the expression level of thousands of genes over a number of experimental conditions or over time. Considering a time-series of n samples, we can represent the observation of an individual signal (gene u
[image: image1.wmf]Î

U) as a point in the n-dimensional observation space X ( f ). Points that form a cluster have similar expression profiles and are subsequently postulated to have related biological function.
   Here the factor f denotes measurements on the transcriptome level. For a more complete picture of gene expression additional factors, for instance describing measurements on the proteome level, are introduced. A phenomena investigated refers to a specific biological concept C which we aim to characterize with the factors defined in [2]. The extension of concept C in U is then the fuzzy mapping Â: U → [0,1], where Â( u) is the degree of relevance of u with respect to C or Â. When Â( u) = 1, u definitely accords with C, and for Â( u) = 0, u does not belong to Â ( a fuzzy attribute of C i.e., the function
/ expression of gene in a specific context ).

   Clustering the points in the observation space X ( f ), using partitional techniques such as the fuzzy-c-means algorithm [5], we are grouping genes (represented by measurements, i.e., points f ( u) in X ) in order to infer the mapping Â in U. Note that what we observe is a fuzzy set
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on X ( f ) (partition of X) and it is necessary to establish a relation between the ‘model’ Â on U and the experimental evidence 
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 in  

X ( f ). The fuzzy relational framework is intended to be a theoretical construct to complement experimental biology. The biological principle described is a conditional statement of the form: If   f ( u)  is  B  Then   C  is  Â.
   Let us have a closer look at the formal system described here. In [2], a factor is defined as a mapping from a set of abstract objects u
[image: image4.wmf]Î

U  to space X. Here u denotes a gene, defined as a conceptual entity which exists apart from any specific encoding; it is that part of the natural system we wish to encode. In this case, u is an abstract state of the natural system under consideration. Factor f evaluates the genes u in an experiment, leading to a numerical representation x 
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 X (f ). We note that any specific act of observation, experiment, is therefore at the same time an act of abstraction; theory and experiment are complementary and should not, cannot be separated.
   In our scenario, factor f : U →  X ( f ) is a mapping from the set U of abstract states into an element of X (f ) which here is a point in the plane R × R of real numbers. Given any mapping between sets, the mapping f induces an equivalence relation Ef on its domain, by saying that Ef ( u1 , u2) holds if and only if  f ( u1) = f ( u2). Therefore to say that two genes u1 and u2 are related means that both produce the same ‘effect’ (observation) in our experiment.

If we form the quotient set U/ Ef , we find that it is in one to one correspondence with the set of all possible values f can assume. This set, called spectrum, is denoted by  

f (U). If x is a point in f (U) 
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 X (f )  we associate with x the entire equivalence class f -1 ( x). This means in effect that we can discuss the properties of our model (determined by an appropriate choice of factor f ), in terms of the equivalence classes on U.
   We identify an (fuzzy) equivalence class Â in U as a cluster of points in X( f ). Genes in U are grouped according to their similarity in expression profiles and hence allow us to predict their biological function. If we are to decide upon the similarity of two gene expression profiles by using the inequality 
|| f ( u1 ) – f ( u​2 ) || ≤ ε in the observation space, the inequality describes a subset (relation) Rε 
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U × U 

Rε = { ( u1, u2) 
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 U × U : || f ( u1) – f ( u2) || ≤ ε  }
This relation is not an equivalence relation. We can define a mapping
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such that 
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( u1, u2) is greater than 1- ε if and only if u1 and u2 are indistinguishable with respect to the tolerance ε :

( u1, u2 ) 
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 Rε   if and only if 
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≥ 1-ε ,

where 
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: U × U → [0,1] such that
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(u1, u2) = 1 – inf { ε 
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 [0,1]: ( u1, u2) 
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 Rε }

Which ε
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 [0,1] and if there is no ε for which the relation holds, we define 

inf Ø = 1. Eε is then a fuzzy equivalence relation, also referred to as a similarity relation. The value Eε ( u1, u2) = 1- min{
 |  f ( u1) – f ( u2) | , 1 }

Describes the degree to which two objects u1 and u2 have similar observable consequences and transitivity of this relation implies that if u1 and u2 are similar and u2 and u3 are similar in their values in X, then u1 is similar to u3.

u1 = u2 and u2 = u3  
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 u1 = u3
   Fuzzy clustering algorithms return a matrix that specifies the degree of membership of any u in the clusters (equivalence classes). We have seen that the comparison of two real numbers with respect to an error bound ε induces fuzzy equivalence relations (a fuzzy set) and therefore suggests a fuzzy relational framework. They are however other reasons in support of a fuzzy mathematical approach. In many cases the evidence that we have a gene belong to a cluster will be a matter of degree and w.r.t functional classes genes may belong to more than one class during an experiment.

   By writing f ( u), the impression is that f is fixed and u is variable. However, the role of the argument and the mapping are formally interchangeable; we can keep u fixed and change the experimental setup. In which case, u becomes a mapping, whose arguments are themselves mappings; 

û ( f ) = f ( u). The question “why f ( u)? ” can now be answered by “because u” or “because û ” [2]. Using fuzzy relations, the obtained formal system allows us to model casual entailment in natural systems (here gene regulatory network).  
2 The Modeling Methodology
 The dualism of probability theory and statistics is a useful analogy to illustrate the difference between a conceptual framework and a working methodology. The motivation for observational modeling is to create a conceptual framework in which problems of genome analysis can be formulated in the way many problems in science and engineering are translated into probability theory, i.e. formulated by means of random variables. Once this translation has taken place, and is accepted as a reasonable model for the experimental context, we can reason about data and make predictions about events that have not yet been validated experimentally.

   Let the description frame of a genome be denoted by ( U, 
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, F), where C 
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 denotes a concept and f 
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F describes a characterization in terms of observable objects u 
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U. 
   The three ingredients ( U, 
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, F) compose our formal model which is then built from data in the following way. An object u is either measured or verbally characterized with respect to a certain factor f. For example, u may be an ORF and f ( u ), the state (e.g expression level) is a value in  

X (  f ).
X (  f ) is referred to as the state space of factor f. The relevance of a symptom for a particular phenomenon is captured by a fuzzy set
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in X (  f ). The relevance of object u
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U to the context or concept C
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is expressed by the fuzzy set Â in U. In general, we do not know A : U → [0,1] a priori. The purpose of a model is to establish knowledge about Â, which describes a particular phenomenon, by means of observations f ( u) establishing symptom
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3 The Modeling Formalization
   The formalization of a concept (conceptualization of a gene) is based on two aspects: intention and extension [4]. An extension of a concept C is an ordinary or fuzzy subset Â of the objects universe U. These atomic data objects may for example be (sub)sequences, ORFs, and so forth. Intention is defined by the collection of factors and their attributes characterizing the concept. The classical definition of a set requires any genome subsequence to either associated with the gene or not. In the other words, given any open reading frame (ORF), for classical set theory we assign truth values 0 or 1 to define a crisp set. This application of the law of the excluded middle defines crisp sets on which we then build a bivalent logic. In many real world problems it is rather difficult to exactly decide whether an element has the property in question or not. In these cases where either the problem under consideration is a matter of degree or in which these decisions are subject to uncertainty; we use fuzzy sets and possibility distributions. See [5] for more details.
   As we almost never are able to include all influential factors in our model, principles must always be complemented by specifying the conditions and context in which we have found that they are applicable. The incompleteness of our model, the context induces uncertainty which we have to consider when drawing conclusions.  

 Definition 1 (Fuzzy Sets): Let all objects of a concept under discussion form a universe U. A fuzzy set Â on the given universe U is defined by a mapping which associates with any object u
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U a real number μÂ ( u)
[image: image31.wmf]Î

 [0,1] in the unit interval, where   μÂ  ( u) is called the degree of membership of u in Â. 

   The set of all fuzzy sets defined on U is denoted by F (U). For the sake of simplicity, we make no distinction between fuzzy set Â and its membership function μÂ   and write Â( u) = μÂ ( u). The definitions of this section are identical to those in [1] and [4].

Definition 2 (Factors): A factor f is a common description of its states and its characteristics. An object u is relevant to a factor f if there exists a state f ( u) of f corresponding to U. Let U be a set of objects and V be a set of factors. The pair (U , V ) is assumed to satisfy the condition that for any u
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U, V contains all factors relevant to u. Hence ( U, V ) defines a (crisp) relation R between U and V, where R ( u , f ) = 1 if u is relevant to f . We define 

D ( f ) = { u
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U  :  R ( u , f ) = 1 }            (1)

V ( f ) = { f 
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V  :  R ( u , f ) = 1 }             (2)

A factor f 
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V is defined as the mapping 

f : D ( f ) → X ( f ) where X ( f ) = { f ( u) } is called the state space of f and u
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U.

Remark: Definition 2 may be generalized to allow for uncertainty in the knowledge about the relevance of an object u to a factor f. R is then defined as fuzzy relation such that 
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( u , f )
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[0,1].
   In general, an object is either a concept such as gene or a structural element such as a segment of the genome, measures or characterizes a sequence or is the measurement of some event in an organism. The latter corresponds then to the definition of an observable [3] in Robert Rosens modeling relation between a natural system and a formal system, illustrated in Figure 1.
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Fig.1
   By accepting the existence of the modeling relation, factors become the means by which we encode and observe properties of the natural system under consideration. Using factors and representing them as mappings between the two spaces U and 
X(f), we take the measurement and modeling process itself into account. As we shall see further below, this will allow us to be precise about model uncertainty, sometimes other models avoid by hiding undesirable properties in assumptions about the natural system.

   A factor f is equal to a factor g, if they are equal mappings, that is, D ( f ) = D ( g ) if and only if X ( f ) = X ( g ), and f ( u) = g( u) for any u
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D ( f ). It is possible for states of a factor g to be a subset of the states of another factor f . A factor g is called a proper sub factor of f , denoted f > g , if there exists a (non-empty) set Y such that X ( f ) = X ( g ) × Y . A factor g is called a sub factor of f , denoted by f ≥ g , if f > g or f = g
Definition 3 (Factor Spaces): The family of state spaces {X ( f )}f 
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F   is called a factor space on U if F , the set of factors , is a Boolean algebra. Therefore, for any  f, g
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F,
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The concept of a state space, given here, is akin to the same concept in control theory, the parameter space in pattern recognition or the phase space in physics (where factors are called observable [3]). The main difference is that a factor space is more general than the usual assumption of an Euclidean or topological space. With the definition of a Boolean algebra, imposing a structure with intersection
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, disjunction
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and the complement, on F, we have a basis for logical reasoning with factors (and hopefully a tool for predicting biological properties and function).

Definition 4 (Conjunction, Disjunction of Factors): A factor h is called the conjunction of factors f and g denoted by h = f 
[image: image46.wmf]Ù

g if h is the greatest common sub factor of f and g. In other words, h = f 
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g, if and only if  X(h) is a common subspace of X( f ) and
 X(g). Similarly, a factor h is called the disjunction of factors f and g , denoted by 
h = f 
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g if and only if X( h ) contains subspaces of X( f ) and X( g ), and it is the smallest of such spaces. Both definitions apply to families of factors 
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and 
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respectively.

Definition 5 (Independent-, Difference-, and Atomic Factors): Any two factors are called independent if their conjunction results in a zero factor, denoted 0, whose only state is the empty state. A factor h is called the difference factor between f and g, denoted by h = f – g, if ( f 
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g)
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h = f  and  h
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g = 0.

A factor f is called an atomic factor if f does not have proper sub factors except the zero factor. The factors in the set of all atomic factors are independent.

A zero factor is equivalent to the empty set in set theory. If a family of factors 

{ f j }j=1,…,r is independent, then 

X(
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j=1,…,r  fj  ) = 
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   Let V be a family of factors and let F be a set of factors of V such that F is sufficient, i.e., satisfying
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  (4)
To this point, we therefore assume that we have a sufficient number of factors describing a gene such that for a given object, there exists at least one factor f in F, such that their state values differ in f . That is, in an experimental context we may find that there are objects for which 

f ( u) = f ( ú ), i.e., some objects are indistinguishable for f .

   The triple (U, 
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, F ) or equivalently 

(U, 
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, { X( f )} f 
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F ) is called a description frame of  
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and is our formal representation of an experiment or investigation. 

Let ( U, 
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, F) be a description frame and
C
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. The extension of C in U is a fuzzy set Â
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F (U ) on U, where Â is a mapping 

Â : U → [0,1]                 (5)

                    u 
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Â( u)
Where Â( u) is the degree of relevance of u with respect to C or Â . When A( u) =1 , u definitely accords with C, and for Â( u) = 0, u does not belong to Â (a fuzzy attribute of C, i.e., the function / expression of a gene or a metabolic pathway). The fuzzy restriction Â is therefore used to describe the phenomenon under consideration. Obviously, the crisp case, in which knowledge of the association of an object u with concept C is certain, Â( u) = {0,1}, is a degenerate case of the given definition. The fuzzy mapping Â defined on U is the ultimate aim of model as it describes the relationship of sub sequences (ORFs) to a gene expression pathway. In general, we do not know Â a priori but must establish knowledge about Â via observable factors f where f ( u)
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X( f  ). For a given description frame ( U, 
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, F ), every state space X( f ) is called a representation universe and hence a factor space is just a family of representation universes of 
[image: image68.wmf]V

.

   Knowledge about Â is gathered via measurements or observations; f ( u), taking values in the representation universe X( f ). Â is the phenomenon induced by data objects and f ( Â ) are its observable symptoms. Formally, f ( Â ) is referred to as the extension of C in X ( f ). The mapping 

Â : U → [0,1] is to capture the essence of a gene’s function (or its expression pattern). The extension of C in X ( f ), 

f ( Â )
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F( X( f )), describing the expression of gene C, is defined (using Zadeh’s extension principle) as follows:

Definition 6 (Representation Extension of C in X( f ) ): For a given description frame 

( U, 
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, F), let C
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 whose extension is 

Â
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F ( U ). For any f 
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F, the extension of f to deal with fuzzy arguments is defined by 

f ( Â ) : X( f ) → [0,1]                         (6)

                   x 
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f(u)=x Â( u).

Then f ( Â ) is a fuzzy subset of the representation universe X ( f ), 

f ( Â )
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F( X( f ) ), where f ( Â ) is called the representation extension of C in X ( f ).       

   The relationship between gene function (the phenomenon) and its characterization by means of observable processes (gene expression) is therefore specified by 

f -1(f(Â)), where
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By definition 6, we have for any u
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U,

f -1( f (Â))( u) = f (Â)(f  (u)) 

                      = 
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f(ú)=f(u)  Â( ú) ≥ Â( u)
that is, f -1(f (Â)) 
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where equality is obtained for f being an injection (one-to-one mapping). Relation (7) therefore describes the quality of the model depending on the model structure the choice of factors to model Â on U. In [1] the following measure is introduced to qualify the coincidence of f(Â)( f( u)) with Â(u).

Definition 7 (Measure of Coincidence): Given a description frame (U, 
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, F), the mapping Λ : F × F(U) → [0,1] ,
Λ
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is called the measure of coincidence. If look at view a collection of factors as the intension of a concept C, the measure 

1 – Λ ( f , Â) serves as a measure for the precision.

   The essence of the modeling relation in 
Fig.1 is therefore captured by the mapping 
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   We notice that for any factor f 
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F, the inverse f -1(f (Â)), which we shall discuss further below, is a composition of two mappings f and f (Â), that is, 

f -1(f (Â)) = f (Â)
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f .
And therefore     
Â = f (Â)
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If f -1(x) is a single point set for every x in 
X( f ), then f (Â) = Â
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f -1 and for any state
x
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X(f), Definition 6 describes how we can define the fuzzy set Â by the family of fuzzy sets { f (Â)} f 
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F . With a family of independent factors, (3), our model may therefore also be seen as a (compound) rule 
( f  = 
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 f i  )

C : IF  f  is  f (Â)  THEN  u is Â         (9)

4 Conclusion
   We shall pause for a moment in order to reflect how we have proceeded so far. We started of with a natural system described using observable factors which we represented by the mapping f :U → X( f). Any object u
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U  is consequently assigned a number, say in R. As the objects are considered in a context, that is, with respect to a concept C, they induce a characteristic distribution Â in U such that the relevance or association of u with C is quantified by Â(u), a value in the unit interval. Since Â is not known a priori, we gather information of concept C by means of observations or measurements in the image set X( f ) of the factor f. Formally, we derive our knowledge in U via the representation extension of C in X( f ) leading to fuzzy restriction f (Â). In other words, our discussion of a concept C in terms of objects u
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U has shifted to a discussion about the extension of a concept in U, Â and its representation extension 
f (Â) in X( f ) or vice versa. Let us therefore look at the fuzzy mapping
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Where, we can obtain 
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For r = 1, the extension principle reduces to 
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As with any mapping an equivalent representation for
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Ĝ = f (Â1) × Â1 
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or more compactly
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where the f (Âk) and Âk , k=1,2,…, are fuzzy subsets of X( f ) and U, respectively; each Cartesian product f (Âk) × Âk is in fact a fuzzy relation in X( f ) × U; and 
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 is the operation of disjunction, which is usually taken to be the union. In terms of membership functions we may then write
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where x
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X ( fj ), u
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U, 
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and 
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are any triangular T- and T-conorm, respectively.         
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