A Prediction Strategy for Decision Making on Remote Procedure Call
Ismail Hmeidi*, Ahmad Dalal'ah* and Ayman Abdel Majeed**

*Jordan University of Science and Technology

Computer Science Department

Irbid 22110, JORDAN

** New York Institute of Technology

Amman, JORDAN

Abstract:- In this paper, a decision making strategy for commands' transfer in distributed systems is introduced. A mathematical model based on a semi-prediction strategy regarding a decision that is to be taken for job transferring has been investigated. The problem of executing a job locally, remotely or downloading a proper function located at a different host is to be resolved. Moreover, a wise decision minimizes the performance time as well as maximizing the usage of different hosts with different potentials is presented. The included numerical results reveal the power of this strategy.
Key-words: Remote Procedure Call, Distributed Systems, Job transfer, Prediction.
1 Introduction

A distributed system is a collection of autonomous hosts connected to each other via a network that is transparent to the user and appear as a single computer.

The growth of distributing systems with the possibility of sharing the available resources has led to the ability of executing some jobs, arrived at a certain node, remotely. Consequently, load balancing and/or using some functions that are located at different sites is aiming at reducing the overall response time of jobs' execution in any distributed system. This would give rise to the possibility of maximizing the overall utilization of a distributed system by sending some of the tasks at highly loaded nodes to be executed remotely. On the other hand, it is worth knowing whether it is better to send a certain job to be executed remotely N times or downloading the intended function that performs the job under consideration locally. Such process can be profitable if the gain obtained from load balancing outperforms the execution of all the jobs locally, in terms of the number of executed tasks in time unit and the number of accepted tasks if the queues are of limited length.

Each computer has its local functions that perform tasks locally or to be used by other hosts. At a certain point, a host might need a function that is found at another computer for performing a given job. The needy host might call such function by sending the required parameters and wait for the results from the remote host who contains this function. This process is called Remote Procedure Call (RPC).
As mentioned above, the RPC is a protocol that might be used by one program requesting a service that uses a given fuction located at another computer in a network in a client-server model without having to understand network details.

RPC is a synchronous operation in general. This requires that each end of any exchanged process responds in turn without initiating a new communication process. A typical activity that might use a synchronous protocol would be file transmission from one point to another. As a given transmission is received, an acknoledgement is returned indicating either success or the need to resend the frame, i.e.; each successive transmission of data requires a response to the pervious frame to carry on.

One needs to measure the performance of the RPC. The basic factor that affects the RPC performance is the time that is spent to call a remote function, executes the task and returns the results (the overall time from calling the function until getting the results). The communication time problem between two computers is considered a major factor that affects the performance of the RPC (this time is composed of media speed and the dialogue protocol time through the network layers).

In this proposed work, the decision of executing a given job remotly or transferring the required function from its location to the machine under consideration, is to be investigated. A predection process will be used for future decisions to minimze the cost of executing a certain job. This predection process will take into account all the possible factors that might affect the cost.
This proposed solution, in this work, is intended to make prediction for a segment of code on a certain computer calculating how many commands in the code require the usage of a specific function which exists at a remote computer. If the the system is obliged to send instructions to be executed remotely and the number of instructions that are to be processed remotely is very high, then this means that every instruction requires a remote function will be transferred, processed and the results will be returned to the sender. Consequently, every command will undergo a communication time from the beginning of calling the function until the end of getting the results. This time might be considerable. The notion of transferring a task, needs a certain function to be used many times, is costly. This cost might be reduced by transferring the function instead of being used remotely. A decision (regarding a function transfer) will take place depending on a combination of metrics such as: dialuge protocol in RPC, connection speed, processing speed of the host, number of commands, and the size of function. These factors will be discussed in turn in the next sections.
2 Underlying model
In RPC, when one machine requests a service that exists at a remote machine, this process will undergo the following steps:

1) The requesting machine sends a request to a remote machine through the underlying network waiting until the results arrive from the remote machine if the request is accepted.

2) The remote machine receives the request and executes the requested process.

3) The remote machine sends the results to the requesting machine.
A first glance might give the indication that executing any job locally costs less than performing it remotely. In fact, other issues should be taken into consideration, such as: the heterogeneity of the system as well as the execution power of the machines.
A delayed execution might incur due to the following reasons:
1) Transmission rate which depends on the media.

2) Protocols that are used in the communication process.

3) Load on the network.
4) Message passing.

5) Location the peer machine.

6) Load at the peer machine.
All these reasons affect on the performance of RPC. This problem becomes clearer upon having a request that needs to be executed remotely many times in the course of its execution.

3 Decision Background
Increasing the performance of the RPC is a challenge. An obvious solution might be reducing the number of call times. We conduct a prediction philosophy to reduce the call times in a constructive manner. If one counts how many commands need to be processed remotely, knows the type of the process and where it should be executed? Then the prediction process would be easier and deciding to transfer a function or calling it depending on the possible gain. To answer this question or to take a decision, one should pass through the main facts which are mostly the following:
1) The number of callings : A first pass over the code counting the number of calls for each unavailable function.
2) The size of memory : is there enough space to transfer or to execute the desiered taske of the remote host.

3)The computer speed : which is better performing the addition function for instance at PC1 or PC2. The processing speed of the PCs might be a crutial factor that affects the decision.
4) The speed of connection media.
5)The performance of the used communication protocols.

6) The function size that is to be used at the remote computer.
All these factors affect the performance of RPC. We will ignor the the protocols performance as well as media speed as a mattar of tractability.
Each host has a service table contains the information of services that are to be executed locally as well as the services that are to be performed remotely.
To cope with above mentioned factors, the tables attached at each machine are to be modified including the necessary information about each machine(such as: processor speed, data transfer speed, and transmitting rate for connection media).
4 Mathematical Model
Performance evaluation is a crutial issue regarding the decision that might be taken. Table 1. can be taken as a good example of two processes that are to be executed, the a table might look as follows:

Table 1.
	Name of
 process
	No. of callings
	Location

	Sub
	500
	PC6

	Sum
	400
	PC2

Let us denote the performance of a transmitted code as a remote process by ρ. This process will take time denoted by τ, where this time is inversly proportion to the performance. So

[image: image1.wmf]t

a

r

/

=

 EMBED Equation.3 [image: image2.wmf]

(1)
where α is a balancing factor between 0 and 1.
As a matter of fact, the performance is proportion to the host speed as well which is composed of data transfer speed plus the processor execution speed ξ.
To calculate processor execution time, one should know the number of instructions
[image: image3.wmf]Ns

 in the target code that are to be processed for each call
[image: image4.wmf]N

.

[image: image5.wmf]=

d

[image: image6.wmf]Ns

[image: image7.wmf]N

/ ξ

(2)

[image: image8.wmf]Ns

 = Number of instructions in the code of process.

N: the Number of callings.
The relation between the performance of transmitted code of a process and the host speed would appear as follows:

[image: image9.wmf]=

r

(
[image: image10.wmf]Ns

[image: image11.wmf]N

+d)/τ

(3)
From 1, 2 and 3 we can get:

[image: image12.wmf]t

d

a

r

/

)

(

d

+

=

(4)
The communication time can be considered as the media speed in addition to the time spent by the used protocols, therefore

[image: image13.wmf]Tp

Tm

Ps

Ct

+

=

(5)
Connection media can be measured by
[image: image14.wmf]Tm

. This implies that
Since the performance is inversely proportional to the communication time, then
From 4 & 5, then

[image: image15.wmf]NTm

Tm

Ps

N

d

2

2

+

+

+

=

at

d

r

(6)
And hence

[image: image16.wmf])

(

2

)

(

Tm

Ps

N

Tm

Tm

d

+

+

+

=

at

d

r

(7)
Using 6 as a prediction metric, one can measure the performance of this proposed approach. However; the memory of the remote host should be cheked first.
Now we will find the performance without transmitting the code of process
[image: image17.wmf]t

r

. It is clear that the execution time will be static.
The communication time will take the parameter values as arguments not the size of the transferred process multiplied by
[image: image18.wmf]N

 for this specific process.

[image: image19.wmf]NTp

d

Ps

N

d

NsN

t

2

)

(

2

)

(

+

+

+

=

t

x

a

r

(8)
Therefore

[image: image20.wmf])

(

2

)

(

Tp

d

Ps

N

d

NsN

t

+

+

+

=

t

x

a

r

(9)
Here
[image: image21.wmf]N

 is multiplied by 2 since one
[image: image22.wmf]N

is for calling and the other one is for receiving results.
5 Numerical results

Arguing that function transfer is better than sending jobs to be executed remotly is in need for experements that aided this smear. An experement has been conducted under the same conditions where the number of calls is variable while transmission rate, job size, communication time and function sizs are constants.

Consequently the decision might be taken direclty from 6 & 8 as follows:

Performance =
[image: image23.wmf]t

r

r

(9)
If the performance is grater than one, then downloading the function instead of sending the tasks to be processed remotely is profitable.
Figure 1. shows the results calculated by our deduced rule. It is obvious that if the number of calls exceeds 10, the downloading the desiared function is profitable.

 [image: image24.emf]0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1020304050 60708090100

Number of Calls

Response time

Job trnsfer

Function download

6 Conclusion
A methematical model for job transferring in a distributed system is introduced. A semipredection has been developed. The strategy minimizes the time spent by the protocol and over the transmitting media since function is to be dowloaded once. On the other hand, if the remote host is faster than the local one then the performance will be better and the delay stem from the sender will be considerable. It is obvious that the more calls we use the less the performance will be.
References

[1]
Kostas Magoutis, José Carlos Brustoloni, Eran Gabber, Wee Teck Ng, Avi Silberschatz, Proceedings of the 9th workshop on ACM SIGOPS European workshop: beyond the PC: new challenges for the operating system. Sept. 2000.
[2]
Wanlei Zhou and Andrzej Goscinski, The Computer Journal, Vol. 42, No. 7, 1999, pp 592-608.

[3]
Andrew D. Birrell, Proceedings of the 5th workshop on ACM SIGOPS European workshop: Models and paradigms for distributed systems structuring, September 1992.

[4]
Michael D. Schroeder, Michael Burrows, ACM Transactions on Computer Systems (TOCS), Volume 8 Issue 1 February 1990.
[5]
M. Schroeder, M. Burrows, ACM SIGOPS Operating Systems Review , Proceedings of the twelfth ACM symposium on Operating systems principles, Vol. 23 No. 5 November 1989.
[6] http://www.ja.net/documents/.
[7] http://support.microsoft.com/.

[8]
http://www.freesoft.org/CIE/RFC/.

1

_1169547474.unknown

_1169549462.unknown

_1169549621.unknown

_1169549803.unknown

_1169550358.unknown

_1169550703.unknown

_1169549907.unknown

_1169549627.unknown

_1169549327.unknown

_1169549426.unknown

_1169547928.unknown

_1169549018.unknown

_1169549278.unknown

_1169548385.unknown

_1169547711.unknown

_1169547053.unknown

_1169547353.unknown

_1169547021.unknown

