
Software Integration Using a Dynamic Wrapper Agent

MIRIAM A. M. CAPRETZ & MARY C. HRYB
Department of Electrical and Computer Engineering

University of Western Ontario
London, Ontario, CANADA N6A 5B9

Abstract: - Many application software packages still in use today are legacy systems which were developed

decades ago in languages which are now considered obsolete. Yet, with proper maintenance and
enhancements, these systems continue to perform their necessary functions effectively. These are not likely to
be replaced any time soon, but present a restriction as they provide little interoperability in today’s open
environment. The option of replacing these systems to keep pace with ever changing needs is daunting, costly
and may even be unnecessary. Instead, incorporating the services of these systems into an open, cooperative,
distributed environment will not only extend their life and services but will also make them available to future
systems which have not yet been created. Agent technology has been successfully used to provide legacy
execution when embedded within the agent context. In order that legacy services become available to an
extended clientele in the agent environment, a dynamic service providing connectivity to the legacy system is
proposed in this paper. The focus of this solution is a wrapper agent that is able to create dynamic connections
to various legacy applications on behalf of client agents as the need arises. It is proposed that the feasibility of
the wrapper agent service depends on the agent’s ability to internalize events and respond according to its goals
and belief base.

Key-Words: - legacy systems, agent technology, back-box modernization, dynamic wrapper agent,
interoperability

1 Introduction

The ever-increasing amount of legacy code still
in use coupled with the constantly changing
software environment has created a need for speedy
methods of interoperability between existing
systems and new technologies and systems. Let us
consider that it has been estimated that we have
approximately 50 billion lines of Cobol, roughly
80% of all software written since 1960, still in use
in legacy systems. If we consider these legacy
systems and what we currently must do to update
their services to keep pace with an ever changing
environment; we are left with the possibility of
having an overwhelming number of either
underperforming or possibly fragile software system
resources. How can we ensure their integrity if we
continue to update them with changes that will
burden them beyond reasonable or reliable
performance?
This concern identifies a need to provide the ability
to integrate these useful, multiple, heterogeneous,
existing software systems or sources with each other
as well as with new software, services and
technologies and doing this with minimal invasion
to their integrity. One method of extending the life
of these reliable, functioning, heterogeneous

systems is to integrate them with new technologies
which are able to use their resources while
providing additional features demanded by our
technologically oriented society. One such
burgeoning technology is agent technology. Agent
technology is also proposed here as a solution to the
integration of the old with the new.

To provide continuous service in this rapidly
changing technological society it is reasonable to
explore the development of a dynamic wrapper
which can provide a bridge between the old and new
technologies as the new technologies evolve.

The dynamic wrapper agent proposed in the
body of this work is based on the BDI (belief desire
intentions) model of agency. The model is
consistent with specifications put forth for agent
platform interoperability. A prototype has been
implemented in a JADEX agent using the JADE
platform and written in Java and XML.

The remaining of this paper is organized as
follows. The relatively new field of agents and
agent systems is introduced and reviewed in section
2. This includes basic information on agent-based
systems as well as the Belief Desire Intention model
of agency. Section 3 presents the concept of the
wrapper agent and reviews a subset of existing
wrapper agent implementations. Application of

specifications developed by the Foundation for
Intelligent Physical Agents to the problem presented
here is detailed in Section 4. Section 5 focuses on
detailed information regarding the internal model of
the dynamic wrapper agent developed, named
DWrap, and its proposed implementation. Section 6
focuses on sample results obtained by using DWrap
with a non-agent software system. Finally,
conclusions are presented in Section 7.

2 Agent Technology
Software agents can be thought of as software
components that operate on their own, or
autonomously, not necessarily depending on human-
user interaction. A widely accepted view presented
by Wooldridge and Ciancarini [8] attributes the
following basic traits to agent systems: autonomy,
reactivity, pro-activeness, and social ability.
Together these have been referred to as the weak
notion of agency. A strong notion of agency
includes the traits contained in the weak notion and
the additional traits: mobility, veracity, benevolence
and rationality.

Several agent technologies have been influenced
by behavioural theories. Some are Agent Oriented
Programming (AOP), Unified Theories of Cognition
(UTC which lead to SOAR), Subsumption Theory
and the Belief-Desire-Intention model [4].

2.1 BDI Model
BDI (Belief, Desire and Intention) is a mature

architecture for intelligent agents. The BDI Model
[4], based on the mental attitudes belief, desire and
intention, was first introduced as a philosophical
model for modeling rational (human) agents, but
was later adopted and transformed into an execution
model for software agents, based on the notion of
beliefs, goals and plans. One way of modeling the
behaviour of an intelligent agent is using the BDI
architecture. Using the BDI approach, an agent’s
state is composed of beliefs (what the agent knows),
desires (what the agent wants - also known as goals)
and intention (how the agent intends to satisfy these
desires - also known as plans).
 Since BDI is a mature architecture which is
incorporated into many agent models, it was decided
to focus on this model of agency for this research.

3 Wrapper Agent – why an agent?

The wrapper agent can be considered to be a type
of interface agent, which mediates between
application agents of the new program

functionalities and the existing legacy system. To
the rest of the agent system, the legacy system can
be wrapped to appear as an agent. This provides an
ability to incorporate new functionality into the
existing software.

The question could be posed, why not use a
transducer? The difference is based on the idea of
asynchronous behaviour. As an agent there is a
choice to do one interaction before another. In
synchronous behaviour there is a one to one
mapping between input and action (output) and the
output always goes to the requester. In agent
behaviour, the agent does not necessarily send a
response to the source of the message, and it may or
may not take immediate action, depending on
previous input. If it sends back results, it often does
so asynchronously.

CIIMPLEX[5] and DIDE[2] illustrate some
efforts on system integration. CIIMPLEX illustrates
the usefulness of integrating semi-autonomous non-
agent components into an agent system. However,
this process of using agents to encapsulate
functional modules requires knowledge of the
internals of the non-agent program which is not
always available. DIDE is specifically developed as
a system application for engineering development
integration. Hard connections are made between the
systems to integrate them. This is not a dynamic
integration system to which any new member could
easily be introduced.

4 DWrap – A Dynamic Wrapper
Agent

It can easily be appreciated that the dynamic
integration service between agent and non-agent
software systems must be further developed. An
agent named DWrap (Dynamic Wrapper Agent) is
presented here as a solution to this dynamic
integration. The internal state and decision
processes of DWrap are based on the BDI (belief,
desire, intention) model of agency [4]. Using this
model, the agent possesses a degree of flexibility in
achieving its goals. It is able to decide internally
how to reach its goals. Thus DWrap is able to
behave in an asynchronous manner since its
intentions are altered as its perception of the world
alters.

DWrap serves as a channel for any number of
other agents, which we shall refer to as the Client
Agents. It supports multiple connections on behalf
of possibly several Client Agents to different
software systems simultaneously. Fundamentally,
DWrap interfaces with a non-agent system on behalf

of a Client Agent, which is unable to interface
directly with the system itself. In this sense, it
behaves mainly as a translator, but the functions of
DWrap extend beyond translator to a manager of
dynamic software integration services with multiple
requests and responses.

DWrap would reside on an agent platform and is
shown in the agent software integration reference
model proposed by FIPA [3] in Fig. 1.

 The Foundation for Intelligent Physical Agents
(FIPA) is an international non-profit association of
companies and organizations sharing the effort to
produce specifications of generic agent technologies
to promote interoperability within and across agent-
based applications [3]. In Fig. 1, based on FIPA
specification [3], three methods of software
integration, through Agent1, Agent2, and Agenti and
Agentj, are displayed.

The dynamic integration solution, however,
requires an understanding of two agent capabilities:
agent resource broker (Agenti) and wrapper agent
(Agentj). The services of these agents are required in
order to realize this integration solution. As the
name implies, the Agent Resource Broker (ARB) is
an agent that brokers resources. These resources are
brokered as a set of software descriptions to other
interested agents. Since an agent may require
something beyond its capability to achieve its goal,
using the Broker’s resources it is able to seek
assistance from another agent or software. The
ARB possesses information on the capabilities of
agents and software along with their software
descriptions that uniquely identifies them. The
ARB advertises its service via registration with the
Directory Facilitator (DF). This research
acknowledges the contribution of the brokering
service to this integration technique, but the design
and implementation of the Agent Resource Broker
is beyond the scope of this paper.

The wrapper agent dynamically interfaces with a
software system uniquely identified by a software

description. Client Agents communicate with the
wrapper agent using ACL (agent communication
language) messages. The wrapper agent invokes the
operations requested on the existing software
system. Additionally, the wrapper agent may have
multiple connections to other software systems and
act on behalf of several clients upon these systems.

This is shown in Fig. 1 where the wrapper agent
(Agentj) supports multiple connections to software
systems simultaneously. The wrapper agent also
has the ability to dynamically manage additional
software devices. This wrapper agent is realized in
this research as the agent DWrap.
 In order for DWrap to be able to provide a
wrapper service dynamically, there are certain
assumptions that must be made to use the model
proposed by FIPA.

The ARB must have a software service
description for the needed legacy system and for
other non-agent systems. This description defines
the nature of the legacy system and how to connect
with it. This solution depends on the existing legacy
system providing correct interface information to
the wrapper agent so that the agent is able to make a
connection.

The internal decision processes of DWrap are of
primary interest in this paper. It is the internal agent
design of DWrap and its mechanism for plan
selection that make this agent able to function in a
dynamic way. It is due to the interest in DWrap’s
internals that this agent is based on the BDI model
of agency.

5 DWrap - Design Internals

In order that DWrap provide a service that is able
to manage several Client Agents as well as legacy
sources, DWrap must display an ability to
coordinate its behaviours and plans with its updated
knowledge in such a way that its goals are being met
reasonably considering the circumstances in the
environment.

DWrap is a rational agent with the capability of
choosing a course of action based on mental
attitudes. These attitudes are modeled on the
concepts of belief, desire and intention. Beliefs
capture the informational attitudes, desires capture
the motivational attitudes and intentions capture the
deliberative attitudes of this wrapper agent.

The agent’s internal reaction and deliberation
mechanism is based not only on incoming messages
but is also affected by internal events and newly
adopted goals. In this way DWrap exhibits
autonomy since it has the ability to make decisions
about its actions and is not limited to simply

Fig. 1 FIPA Agent Software Integration
Reference Model [4]

Software1 Software2 Software3

DF Agent2

Agenti
ARB

Agentj

Wrapper

Agentk
Using

Software

Agent1

Softw
are4

Message Transport System

ACL

reacting to external stimuli alone. Instead, its
response to external stimuli takes into consideration
its internal state and knowledge base as well. The
results of DWrap’s deliberations determine the
events that are sent off. These events, in turn, are
dispatched to either the already-running-plans
and/or to new-plans from the plan library. In this
sense, DWrap is also a reactive agent. Reactivity
refers to DWrap’s perception of and response to the
events that occur in its environment. The current
beliefs of the agent affect the deliberation and
choice of plans. Additionally, when plans run, they
are able to affect the belief base. This in turn can
result in further internal events, taking up new goals
and continued execution of new plans. Thus, if
while trying to achieve a goal the conditions in the
environment change, DWrap is able to respond to
these changes and possibly discontinue its current
activity either temporarily or permanently.

In Fig. 2, the abstract architecture for DWrap is
presented. This architecture is based on the
concepts of BDI as implemented in JADEX [6], an
extension to the JADE Agent Framework. The
reaction/deliberation mechanism presented in this
model does not vary for individual JADEX agents.
Rather, the individualistic behaviours of specific
JADEX agents are determined by their belief, goals
and plans.

JADE is an open-source, agent-based software
development project initiated at the Telecom Italia

Group Company (TILAB) [1]. It provides a

Java-based implementation of an agent platform in
compliance with FIPA specifications for
interoperable, intelligent, multi-agent peer-to-peer
applications. On the agent platform each JADE
agent is a peer since it has the ability to send as well
as receive communications.

DWrap is developed using the JADEX agent
system that in turn was developed specifically to
integrate with the JADE agent Framework.

The JADEX package provides the ability for the

development of FIPA-compliant agents by applying
the BDI architecture at the design and
implementation layer.

DWrap has a belief base which is a store of
information (or facts) which comprise DWrap’s
knowledge. Beliefs can be either single- or multi-
valued. One function that DWrap is required to
fulfill is that of translation from the client query into
the legacy query. This translation information is
stored as beliefs in DWrap’s belief base. This belief
base is implemented incorporating relational
database concepts and an internal query language.
A special feature of this belief base is its support for
conditions. Beliefs can be retrieved and used for
evaluation of a belief base state. Using a belief in
support of a condition allows internal events to be
generated when a condition is satisfied. This in turn
may trigger plans or lead to new goals.

Goals are the states to be achieved by the agent
or the motivation for the agent’s behaviour. They
are the driving force for the agent’s actions.
JADEX provides the ability for four types of goals:
achieve, maintain, query and perform.

An achieve goal defines a desired state without
specifying exactly how to get it. In this way the
agent is able to exercise autonomy, trying various
plans to achieve the desired state. This desired
target state could be specified by an expression that
is evaluated. A maintain goal requires monitoring
of the state and executing those plans as necessary
to re-establish the target state. It specifies that a
state should be maintained once it is achieved. A
query goal recognizes the need for more
information. If there is a lack of information for the
agent to make a decision, then plans are executed
which assist in gathering the required information.
A perform goal specifies a direct action and does
not require the agent to perform any reasoning. It
directly defines the plan to be executed.

A goal must first be adopted as an option for the
agent to consider. Following this, there exist two
alternative ways to implement reasoning in JADEX
agents. Goals can be enabled (activated) or disabled
(deactivated) based on internal conditions if a ruled
based approach is used. Otherwise, activation and
deactivation can also be achieved manually from
procedurally implemented plans.

Plans are executed to achieve the goals. They
are the procedures used to achieve the desired state
and represent the actions that the agent can perform.
There are two parts to the plan: the plan head and
the plan body. The plan head is declared in the
agents definition language while the plan body is
realized in a Java class and can be threaded or non-
threaded. DWrap’s functionality is represented by

Fig. 2 JADEX Abstract Architecture [6]

separate plans (Java classes). These plans are in a
plan library. Events that occur within DWrap
trigger the appropriate plan(s). They are triggered
in steps, where each plan step occurs after the event
specific to it transpires. In Fig. 2 representing the
internal architecture of DWrap, we see that already
running plans have input from goals which then
result in new adoptions to the plans. In this way,
DWrap is able to continually accept new plans and
cycle in the resulting newly adopted goals.

Plan selection and execution is guided by BDI-
flags that capture the execution semantics of an
active goal.

6 Implementation and Evaluation
This section presents an implementation of

DWrap with an existing non-agent system called Air
Gourmet [7]. Air Gourmet is a software system that
coordinates airline food service management. Upon
placing a reservation for a flight, the dietary
requirements of each airline passenger are
coordinated with the flight they are taking. The
assumption under which this implementation is
being made is that airline services are constantly
being upgraded and Air Gourmet has undergone
changes over several years that have resulted in it
becoming less able to successfully accommodate
additional maintenance changes. In particular,
adding functionality to current implementation of
Air Gourmet is necessary but costly.

In the system implemented, we are primarily
concerned with the interactions between the Client
Agent, DWrap and the legacy software system,
which is Air Gourmet. A dummy agent is used to
represent a client software system that requires
contact with the legacy system. The represented
client software system is an agent based system and
sends a representative Client Agent to seek the
services of DWrap in order that information can be
exchanged with the non-agent legacy system, Air
Gourmet. Thus, the dummy agent will provide the
ability to send the required request to the Client
Agent, which in turn interacts, with DWrap in order
to interact with the legacy system.

DWrap is loaded onto the platform from the
Agent definition file shown in Fig. 3. This file will
provide the mechanism for plan selection by DWrap
which is the core of its reasoning. Plans are selected
not only for goals, but also for internal events and
incoming messages.
 A single Client Agent representing the client
system is also loaded onto the platform to interact
with DWrap. As seen in Fig. 4, the Client Agent
and DWrap are now registered on the agent

platform and live there with the agent management
system, remote monitoring agent and directory
facilitator in the same agent container.

As per FIPA, this implementation adheres to the

specifications of software integration and expects
that the Client Agent will have received a software
description from the Agent Resource Broker that
will provide a unique identification of the specific
software system, Air Gourmet, which the Client
Agent wishes to contact. In this implementation, the
software identification provided to DWrap by the
Client Agent is the physical location of Air
Gourmet.

When DWrap is initialized, it begins to live on
the platform and behave as a reactive agent. DWrap
has as one goal to update its registration with the
Directory Facilitator on a regular basis. This
ensures that as its beliefs change and DWrap grows
in knowledge, the services it is able to provide will
be updated in the yellow page services provided by
the Directory Facilitator. Thus, even before
DWrap’s services have been requested, it is driven
by an internal event that is triggered by one of its
registration goals.

Let us consider a scenario for the integration of
Air Gourmet with a new agent based system called
Air Gourmet XP. This system uses DWrap to
extend the service of the original legacy system into
an agent system that harnesses additional airline

Fig. 4 Agent Platform

Fig. 3 JADEX Agent Creation of DWrap

information and is able to display this in a timely
fashion to airline personnel on a user-friendly
interface (Fig. 5). This is extending the
functionality of the legacy Air Gourmet by
providing meal-updates to the caterer-provider of
the airline meals and to the personnel responsible
for loading and servicing meals. Air Gourmet XP
provides, in addition to meal information, air flight
information that was not previously integrated with
the legacy Air Gourmet. As the time to departure
approaches, the sliders bar approaches the 0 hrs
mark. Additionally, if the flight is delayed, Air
Gourmet XP captures this information and the bar is
shifted away from the 0 hrs mark and back towards
the 24 hrs mark accordingly.

Air Gourmet XP makes available the information
originally offered by the legacy Air Gourmet system
as well as new information in the form of updated
passenger meal requirements, meal changes and
flight schedule information.

DWrap has the ability to use the legacy Air
Gourmet system and to extend its services in new
functionality of Air Gourmet XP. The use of
DWrap with the legacy Air Gourmet reduces the
costs associated with replacement and eases
maintainability of the system.

7 Conclusions

Due to the importance of existing systems,
software maintenance has become the most costly
stage of the software lifecycle. Thus, to reduce
costs, there is a need in industry for software that is
less expensive to maintain and with the ability to
incorporate new functionality into it more easily.

The main objective of this work was to explore
the integration of legacy systems with new agent
technologies through the development of a dynamic
wrapper agent. This agent would be required to
meet the criteria put forth in FIPA specifications for
dynamic integration of non-agent software systems
with an agent environment. Furthermore, the
wrapper was to internalize the BDI model of
agency.

The decision to look at agent technology for a
solution for legacy integration was mobilized by the

view that agent technology is a key technology for
supporting integration in heterogeneous open
environments. The idea of a dynamic service was
desirable to allow integration to be available to
software systems and technologies not yet
foreseeable. Like a file that can be shared amongst
different software programs, the services of a legacy
system would thus become available to many
present and future systems.

Despite some limitations, the work presented in
this paper is a step towards minimizing the costs
associated with replacing what may be viewed by
some as an obsolete or inflexible system. It will
support the aim of decreasing maintenance effort.
The possibility is that the human maintainer needs
only to provide software interface information for
the legacy system once and leave the deployment to
DWrap, an implementation of a JADEX agent.

References:
 [1] F. Bellifemine, A. Poggi, and G. Rimassa,

“JADE – A FIPA-Compliant Agent
Framework”, CSELT Internal Technical
Report. Part of this report also published
in Proc. of PAAM'99, London, April 1999,
pp.97-108.

[2] DIDE Distributed Intelligent Design
Environment,http://www.hds.utc.fr/~barthes/D
AI-eng/projets/dide.html

[3] “Foundation for Intelligent Physical Agents
(FIPA)”, http://www.FIPA.org/

 [4] M. Georgeff, B. Pell, M. Pollack, M. Tambe,
and M. Wooldridge, “The Belief-Desire-
Intention Model of Agency”, in Proc. of the 5th
Int. Workshop on Intelligent Agents (V): Agent
Theories, Architectures & Languages, pp. 1-10.

[5] Y. Peng, T. Finin, H. Chen, L. Wang, Y.
Labrou, R. S. Cost, B. Chu, M. Russell, B.
Tolone, A. Boughnnam, and J. McCobb “An
Agent System for Application Initialization in
an Integrated Manufacturing Environment”, In
Proc. of SCI’99/ISAS’99, Vol. 7, Orlando, FL.,
pp. 415-421.

[6] A. Pokahr, L. Braubach, “JADEX User Guide
Release 0.92”, Distributed Systems Group,
University of Hamburg, Germany, 10, May,
2004.http://vsis-www.informatik.uni-
hamburg.de/projects/jadex/features.php

[7] S. R. Schach, Object-Oriented and Classical
Software Engineering, 5th Edition, McGraw-
Hill, New York, NY, USA. 2002.

[8] M. Wooldridge, P. Ciancarini, “Agent-Oriented
Software Engineering: The State of the Art,” in
Proc. of 1st Int. Workshop Agent Oriented
Software Engineering, Sept 2000, pp. 1-28.

Fig. 5 Air Gourmet XP Confirmation Screen

