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Abstract: - Recently key agreement protocols have been discovered using non-abelian groups. We present a new key agreement with its security is based on the GDP in a suitable group. We give a partial implementation of our key agreement protocol using braid groups.     
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1   Introduction
  We consider the following problems in a non-abelian group G with x, y, ya, yb(G are public elements, a, b, c, d(G are secret elements and e, f(G. Let A and B be subgroups of G. We assume the above unless otherwise stated in the particular problem. We may consider G to be the braid group because the following problems are then hard and by hard we mean there is no known algorithm to solve the problem being considered such for cryptographic protocols based on the problem would then be insecure for practical use. In the following problems we may consider choices for A and B selected from the braid subgroups LBn and UBn defined below.  

     The DH-DP (Diffie Hellman-Decomposition Problem) [1], [2] is if ya = axb and yb = cxd with a, b(A, c, d(B with A and B commuting subgroups find the element cyad ( = aybb = acxbd). The DH-DP generalises the DH-CP (Diffie Hellman-Conjugacy Problem) [2] because it simplifies to the DH-CP with a = b-1 and c = d-1. The CSP (Conjugacy Search Problem) [1], [3] is if y = a-1xa find e such that y =  e-1xe. The DP (Decomposition Problem) [1], [2] is if y = axb, a, b, e, f(A find e, f such that y = exf. The MSCSP (Multiple Simultaneous Conjugacy Search Problem) [1], [3] generalises the CSP.

A key agreement protocol is an algorithm followed by two parties so that a secret key becomes available to the two parties for cryptographic purposes [6].  

     Key agreement protocols have been discovered  based on the above problems which for example the KLCHKP key agreement protocol (which HAS similaraties to the Diffie-Hellman key agreement protocol) [4] this protocol is the basis of  the KLCHKP cryptosystem [4] of Ko et al based on the DH-CP, CSP . The CKLHC cryptosystem [8]  is based on the DH-DP, DP, KLCHKP key agreement protocol and is a generalisation using the DH-DP of the KLCHKP cryptosystem. 

     The AAG (Anshel-Anshel-Goldfeld) algebraic key agreement protocol is based on the MSCSP in fbraid groups[3]. Details of implementations of computations in braid groups used in the KLCHKP cryptosystem, CKLHC cryptosystem and AAG key key agreement protocol are given in [8]. 

     The security of our group theoretic protocol is based on the GDP (Generalised Decomposition Problem) which is conjectured to be hard in a suitable group. The GDP is if y = axb, e(A, f(B  find e and f such that y = exf , A and B are monoids or subgroups of G.

It follows from the definition of the DP (Decomposition Problem) in [1], [2] and CSP (Conjugacy Search Problem) in [1], [3], [4] that the GDP generalises the DP and CSP.

Some reasons we think the above conjecture is true are an efficient (by efficient we mean an algorithm is useful for cryptographic purposes) algorithm to solve the GDP will solve the CSP which is hard in Bn [1], [3], [4] (but there is an inefficient algorithm to solve the CSP that has exponential running time [3], [4]) or solve the DP which is hard in Bn [1], [2].

2 The Group Theoretic Key Agreement Protocol

All group elements in G in this section are rewritten such that the GDP is hard. An efficient algorithm for the canonical form or an eficient algorithm for the word problem for elements of G is required. V, W, L, U, E, F and X are subgroups or monoids of G which are publicly known. x(X is a publicly known element. We define the notation I n.c. (resp c.) J to be for I and J that are arbitrary subgroups or monoids of G which do not commute (resp. commute). 

     We have x ( e we require the following conditions. V c. L, V n.c. X, W c. U, W n.c. X, L n.c. X, U n.c. X,  V n.c.E, E n.c. X, F n.c. W, F n.c. X   

A secret pair is (v,w) where v( V and w( W  and the associated public product is c=vxw.

A secret pair is (N,P) where N(L,E, P(U,F and the associated public products are (c1,c2) = (NK(s),scPK(s),s, NK(s),sxPK(s),s) for some N0,s( L, P0,s ( U, N1,s(E, P1,s ( F, s ( Z The notation K(s) is understood to mean the sth bit of the key K initially s = 0.

i) User A selects a secret key K({0,1}n, K(Z

ii) User B selects v( V and w( W  and transmits c=vxw.

iii)User A transmits (c1,c2) = (NK(s),scPK(s),s, NK(s),sxPK(s),s) for some N0,s( L, P0,s ( U, N1,s(E, P1,s ( F

iv) User B calculates d=v-1c1w-1 and computes C(d,c2)

If C(d ,c2)  = FALSE  then K’(s) = 1

If C(d ,c2) = TRUE  then K’(s) = 0

The protocol steps ii) to iv) are repeated n times for 0≤s≤n and then user B has K’= K., K’(Z

The boolean function C(d,c2) compares if the elements d,c2 and this can be accomplished by using the algorithm for the word problem.

   The main differences when comparing our key agreement protocol to the AAG group theoretic key agreement protocol [3] is the security of our key agreement is not based on the MSCSP and our key agreement does not rely on the homomorphic property.

3   A Partial Implementation in Braid Groups

For background of braid groups see [7], [9]. All braids in our protocol are expressed in left canonical form. We assume expressing braids in left canonical form makes the GDP hard one reason we as some this is because the left canonical form makes the DP hard in Bn. 

     Our key agreement protocol may be implemented using the subgroups (which are also the subgroups used in the CKLHC crytosystem) letting U = LBn, W = UBn and X = Bn. For the choices of the other subgroups or monoids it may be suggested L = V with L and V to be based on the complete braids [9] or the pure braid group [9] described below because their properties allow commuting elements to be constructed. Observe we have not proved that our suggestions for L and V have all the properties in section two and this is one reason why our implementation is partial. 

   A complete braid has the representation 

(p, q) = ((q-1(q-2...(p) q-p+1

see [9]. With 1 ( p < q ( n. Let ( = (p,q) and ( = (r,s) and p ( r < s ( q then using (( = (( [9] commuting elements can be constructed. The pure braid group has a representation with generators 

Ai,j = ((j-1(j-2...(i+1)(2i((-1i+1...( -1j-2(-1j-1)

see [9]. Then using the identity Aj,n-1Ak,n = Ak,nAj,n-1 with 1 ( k < j ( n-2 [9] it is straightforward to construct commuting elements composed of a given number of the generators. 

     Algorithms with complexities (depending on the braid index and the canonical lengths of the braids) that are constant or linear are given to efficiently compute (using the Artin presentation or band-generator presentation) the left canonical form, product and random braids see [8] so we have an efficient algorithm for the word problem in braid groups.

     The reader may further develop our partial implementation of the key agreement protocol in braid groups for example to see if it feasible. The reader may investigate further what other subgroups or monoids of Bn can be used and may prove more instances for when the GDP is hard in Bn. The reader may consider using the Cbraid software library which is an implementation of braid groups written in C++ see [5].
4   Conclusion

We have presented a new key agreement with a suggested partial implementation in braid groups. The security of our key agreement is based on the GDP  in a suitable group. 
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