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Abstract: - In this paper we describe the use of Multilayer Perceptron Array for learning and classifying speech signals, 
using characteristic vectors of reconstructed dynamics. First,  we consider the phonatory system as a black box, where the 
only available data is its output: the speech signal. This is a way of accessing underlying dynamics,  and is the starting 
point for two kinds of experiments: classification of vowels and digits, with Venezuelan Spanish voices.  Results verify 
positively that characteristics vectors extracted from underlying dynamics hold discriminative power for distinguishing 
between classes of speech signals. Besides,  neural networks are able to generalize using this kind of data.
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1  Introduction. 
Lately, it  has been a surge in the interest  of the 
parameterization on speech signal based on the 
reconstruction of the phonatory system’s dynamics 
[5, 6]. In principle, a pattern recognition problem 
must be solved using a qualitative approach over the 
underlying physical systems profile [10, 11], in this 
case, the phonations. On the contrary, the 
conventional analysis techniques are based on the 
hypothesis that  the verbal signal is linear, although 
there are many objections to this assumption. For 
example, in the popular source-filter model of 
speech generation, the excitation source is the 
turbulence developed in the vocal track itself, so in 
this case the natural source does not match the 
model. Besides, a linear model will have a difficult 
time adjusting to high variability in the signal. 
Therefore, in the end, these models are only an 
approximation of the phonatory system. The 
approach we present here recurs to a simple 
Multilayer Perceptron Array (MPA) for learning and 
classifying speech signals, using characteristic 
vectors of reconstructed state 
space. 
 Two kinds of experiment are performed: vowels and 
digits. Signals in both trials are extracted from 
SpeechDat  [4] database of Venezuelan Spanish 
utterances. Therefore, this is the first study, which 
employs nonlinear techniques with Venezuelan 
voices. In each experiment, two corpora are defined: 
CE and CP, consisting of signals for training the 
MPA, and testing it, respectively.

2  Reconstructed state space
In the case of nonlinear systems, with incomplete 
data, the extraction of new information from data is 
more difficult  than in the linear case [2]. If the 
system is very complex (ie. phonatory system), but 
only one of its properties (ie., verbal signal) is 
available by a sensor, the traditional analysis 
procedures will be very limited. As an alternative, 
the reconstructed state space allows to recover the 
nonlinear system’s dynamics from only one time 
series [1]. Basically, in this space some geometric 
structures called attractors are build by the 
trajectories. Naturally, the reconstructed space is not 
completely equivalent  to the internal system’s 
dynamics, but  under some theoretic restrictions, the 
topology of the dynamics is preserved. This allows 
that the conclusion obtained from the reconstructed 
dynamics will be valid for the real and inaccessible 
internal dynamics (black box) [1, 7, 9]. Also, it 
would help on the detections of the time series’ 
structures that could pass unnoticed.
 It  follows the description on how to obtain the 
reconstructed state space. Consider a set  of samples 
uniformly spaced of one verbal signal Sv.  The 
reconstructed state space is a multidimensional 
representation of the signal against delayed versions 
of itself (subseries). In more formal terms, the 
reconstructed space state is formed by the definition 
of the vectors Vn en ℜm:

Vn = {Sv[n], Sv [n +τ], ...,  Sv [n + (m - 1) τ]} (1)
or

Vn = {Sv[n], Sv [n -τ], ...,  Sv [n - (m - 1) τ]}  (2)



where Sv[i] is the signal value in time i (a sample). In 
turn, m and τ are fundamental reconstruction 
parameters known as embedding dimension and lag, 
respectively. The Takens’  theorem [9], which 
associate  the Reconstructed State Space with the 
real internal systems’ dynamics,  express that given 
sufficient m  and τ, the real dynamics and the 
Reconstructed State Space are topological 
equivalent. Preliminary tests with differential 
entropy method [3] resulted in low values for m  and 
τ, over the corpus of vowels. So, we set  m  = 2 and τ 
= 3 in subsequent experiments. Figure 1 shows the 
RSS for an arbitrary vowel, with a grid defining 100 
blocks over the plane. On the other side, digits 
constitute very complex signals because of their 
superior phonetic richness, and consequently, simple 
space representation is out  of the question. A 
somewhat  different approach, discussed in next 
section, will be used for digits.
Note that each axis in the figure corresponds to [-1,
+1] interval, which is achieved by means of 
normalizing the speech signal: every sample is 
divided by max(abs(Sv)). This trivial, but  important 
step allows the blocks Bi to be of fixed dimensions. 
Strictly, each block is a square, and its area is 4 / r 
(dimensionless), where r is the total of blocks over 
the plane. In figure 1, r = 100, and so each block's 
area is 0.04.

3  Feature Extraction
For the vowels, the characteristics vector 
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 is 
given by the spatial density for each block Bi(1 <= i 

<= r ). Then, 
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 has, in principle, r elements. In 
each Bi, the spatial density is compute as follows:

€ 

spatialDensity(Bi) =
Bi

Sv      (3)

where, | Bi | is the numbers of points of the attractor 
delimited by Bi and |Sv| total of samples.

 Also, to give robustness to the classification, 
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 is 
extended with the resulting r elements of the 

previous analysis over the time series 

€ 

Sv
d

 = Sv[i + 1] 
– Sv[i]. This way, the signal’s variation speed is 
included to the vector, by means of an 
approximation of the first  differences.

Fig. 1: RSS for a Venezuelan Spanish vowel

 In the digits case, the described analysis is applied 

over superposed plots, without the r elements of 
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Sv
d

. 
Here, a plot  is a sequence of samples, in other 
words, a subsequence of Sv. For a given signal, the 
plots always have the same size, but between 
signals, the plot’s size could change. Exactly they 
are named proportional because their size is a 
proportion of the signal.  The signal is divided in np 
same sizes segments , np is even. Where LSeg is the 
length of each one of the np segments (LSeg = 
Length(Sv)/np), then the plot’s length LTr is 2 x 
LSeg. The first plot starts with the first sample of the 
signal. After that, each new plot starts at  the middle 
sample of the previous one with an extension of LTr 
samples. Therefore, the np – 1 plots of a signal start 
at  the sample

i x LSeg + 1 (0 ≤  i ≤  np – 2)
 
 Later, an analysis similar to the one for vowels is 
applied to each plot. Of this form, the plot’s analysis 

contributes to the digits characteristic ‘s vector, 
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, 
with (np – 1) x r elements. 

4  Multilayer Perceptron Array 
Be n the amount  of categories to recognize. Then, 
for each experiment, the classifier consists of an 
array [R1R2…Rn] of n multilayer perceptrons neural 
nets Ri. Thus, a neural net  is associated with each 
category. Once the corpus CE is defined, we can start 
the training session. Basically, each Ri is trained with 
all the signals j (1 ≤ j ≤ cardinality (CE)) of CE. To 
all the training entries for which it can be verified 
that category(j) = category(i), the output  will be 1; 
else the output is 0.
 Later, when classifying, the input  signal is 



characterized and the resulting vector is 
administered to each one of the n neural nets. The 
neural net with the highest output determines the 
category for the signal.
 The neural nets used for the classifier have three 
layers. The number of input neurons will depend on 

the size of the characteristics vector, 
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 or 
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. 
After that, if that  vector has p  components, then we 
will have p  input neurons. For example, if the state 
space is partitioned in 100 blocks, and the density of 

each one is calculated,    
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, this will implied that 
the input layer will have 200 elements. On the other 
hand, in the hidden layer will have 5 neurons, and 
the output layer one neuron. The activation functions 
are logarithmic sigmoids, with the exception of the 
output neuron that have a linear transfer function. 
Finally, the Levenberg-Marquardt algorithm is used 
for training the neural net. This is an advanced 
algorithm for non-linear optimization, and normally 
converges to the minimum error faster that the Back-
Propagation one, although it  has a big memory 
requirement.

5  Results
For each experiment, to be done, a MPA was build. 
We set r = 100, and for digits we set  np in 6. In order 
to verify the classifiers, we gave as input the signal 
in the training corpora, obtaining a 100% 
classification rate. Speaker dependent tests gave, in 
average, recognition’s rates of about 92% and 
65.5%. In the other hand, with speaker independent 
tests, we obtain, for the vowels; an average of 55%, 
and 66% for the digits.

a e i o u %

a 8 2 2 8 0 40.00

e 0 8 9 3 0 40.00

i 0 4 12 2 0 60.00

o 2 2 0 14 2 70.00

u 0 1 3 3 13 65.00

55.00

Table 1: Confusion matrix for speaker-independent 
vowels.

0 1 2 3 4 5 6 7 8 9 %

0 11 0 0 0 0 2 0 7 0 0 55.00

1 0 12 2 4 0 0 0 0 1 1 60.00

2 0 0 13 3 1 0 0 0 0 3 65.00

3 2 0 2 14 0 1 0 1 0 0 70.00

4 1 0 0 0 17 0 0 2 0 0 85.00

5 1 0 0 0 0 11 0 8 0 0 55.00

6 2 1 0 4 1 0 9 1 0 2 45.00

7 3 0 0 0 1 2 0 14 0 0 70.00

8 0 0 1 0 1 0 0 0 18 0 90.00

9 0 3 0 2 0 1 0 1 0 13 65.00

66.00

Table 2. Confusion matrix for speaker-independent 
digits

We can see that  the main diagonal of the confusion 
matrixes confirm the tendency of the MPAs to 
correctly classify the input signal. In the case of the 
vowels, the variability between the speaker’s 
independent  signals deteriorates the recognition 
accuracy. It  is interesting, that this does not happen 
in the case of the digits, maybe because these signals 
include more information than the vowels, and the 
MPA is able to capture it.

The characterization of the attractor’s density in the 
state space has been considered by some studies, to 
classify vowels signals. For example, in [10] a 
Bayesian classifier is used, with an average accuracy 
of 34.49% for the English vowels. In [5,6] a fuzzy 
information space is used, with 100% accuracy but 
only with a six signals corpus. Comparing with 
frequency domain techniques, we have the work of 
Maldonado [4], which used a corpus about 
Venezuelan Spanish digits, with recognition rates 
above 90%. But, this work used already establishes 
analytic approximations, like cepstral coefficients 
and hidden markov models.

6  Conclusions
Considering that  this analysis is completely time-
domain based, recognition rates are fairly good. 
However, further research is needed for determining 
effect  of a higher (ie., m  > 2) dimensional analysis. 
When more than two dimensions are used, 



characterization becomes difficult. Except  for MPA 
training, the exposed techniques do not require 
considerable computational resources. Then, a 
question to answer is if computationally intensive, 
high dimensional analysis, results worthy, taking 
into account  the current  accuracy of frequency 
domain techniques. This kind of investigation is 
needed because learning of more phonemes will 
certainly ask for more attractor data.

References
[1] H. Abarbanel, R. Brown, J. Sidorowich, y L. 

Tsimring, ''The analysis of observed chaotic data 
in physical systems'', Reviews of Modern 
Physics, vol. 65, No. 4, 1993.

[2] E. Bradley, ''Time series analysis'', in Intelligent 
Data Analysis: An Introduction, Springer, 1999.

[3] T. Gautama, D. Mandic, y M. Van Hulle, ''A 
differential entropy based method for 
determining the optimal embedding parameters 
of a signal'', Proceedings of the International 
Conference on Acoustics, Speech and Signal 
Processing, 2003.

[4] J. L. Maldonado, Tratamiento y reconocimiento 
automático de señales de la voz venezolana, 
Disertación doctoral, Universidad de Los Andes, 
2003.

[5] W. Rodríguez, H.-N. Teodorescu, F. Grigoras, A. 
Kandel y H. Bunke, ''A fuzzy information space 
approach to speech signal non-linear analysis'', 
International Journal of Intelligent Systems, vol. 
15, No. 4, pp. 343-363, 2000.

[6] W. Rodriguez, ''Similarity of Dynamical 
Systems'', Ph.D. Thesis, University of South 
Florida, 1998.

[7] T. Sauer, J. A. Yorke, y M. Casdagli, 
''Embedology'', Journal of Statistical Physics, 
vol. 65, pp. 579-616, 1991.

[8] Shepherd, A. J. Second-Order Methods for 
Neural Networks, Springer-Verlag, 1997.

[9] F. Takens, ‘’Detecting strange attractors in 
turbulence’’, Dynamical Systems and 
Turbulence, Warwick, 1980.

[10] J. Ye, M. T. Johnson, y R. J. Povinelli, 
''Phoneme Classification using Naive Bayes 
Classifier in Reconstructed Phase Space'', 10th 
IEEE Digital Signal Processing Workshop, 
2002. 

[11] F. Zhao, ''Extracting and Representing 
Qualitative Behaviors of Complex Systems in 
Phase Space'', Artificial Intelligence, vol. 69, 
pp. 51-92, 1994.


