
Dynamically Creating Virtual Museums

DIONYSIOS POLITIS, GERASIMOS VAIOU, MARRAS IOANNIS, PAPAIOANNOU
ATHANASIOS, LAFTSIDIS CHARALAMPOS

Department of Informatics

Aristotle University of Thessaloniki
University Campus, Thessaloniki, GR-541 24

GREECE

Abstract: - The idea of creating a virtual museum is far from new. However, creating a
museum that an archaeologist could customize to match his needs is quite innovative.

Here we present a system which can be used for online visualization of museums. Al-
though, there are plenty of online virtual museums, none of them is customizable. These
museums are designed statically and represent certain museums which makes it rather diffi-
cult to change.

On the contrary, our Dynamic Virtual Museum is easily managed through database
entries, which provide all necessary variables (rooms, models, exhibits) and interact with the
renderer through scripts. Therefore, the virtual museum can be easily transformed to match
any given exhibition or a visitor’s specific choices.

Key-Words: - Virtual Museum, Dynamic, Web, Databases.

1 Introduction

The system consists of two main elements, a
database where all information about the ex-
hibits, models etc. is kept and a renderer
which is responsible for graphically repre-
senting all this information on the computer
screen.

The database part is handled by
MySQL[1], whereas VRML[4] is responsible
for all the graphics. In order to easily connect
MySQL and VRML through an easy to use
web interface, php[3] is used.

Our goal is to create a fully customizable
museum, which will be easy to navigate and
control by any archaeologist or visitor. It

could be used in a wide range of occasions,
such as an exhibition centre where exhibits
are changed quite often, it could be an impor-
tant help to a museum executive who needs
to rearrange some or all of the exhibits, or it
could be used by any visitor who wants an
exhibit to match his certain needs.

2 The renderer

The graphics subsystem of the application is
responsible for rendering the museum rooms
and the exhibits displayed therein. It also
handles the interaction of the user with the
virtual world. This would allow, for exam-
ple, a verbal description to be played back,

Figure 1: A sculpture and some paintings in a virtual museum

whenever the user clicks on an exhibit.
The render is implemented using VRML

(Virtual Reality Modeling Language), a web-
based network protocol for working with
three dimensional (3D) scenes or data sets.

It allows the creation ofplatform-
independent 3D objects, described in text
files, which can then be displayed on any
computer platform for which an appropriate
browser exists.

VRML browsers come in two types:

stand-alone and plugins for HTML
browsers.They allow a user to walk into a
VRML scene using a mouse or keyboard and
navigate, as he does in the real world. A
VRML document, like an html document, is
a formalized text description of a Web page’s
contents. Unlike html however, VRML is
not ”marked up” text. It contains descrip-
tions of three-dimensional objects and their
interrelationships.

3 Database

The database subsystem of the application is
responsible for the storage of all elements im-
portant to the museum model. It is organized
in a way which makes it possible for the sys-
tem to easily extract information about the
exhibits and how they should be displayed in
the virtual museum.

The database used is MySQL, the most
commonly used database in conjunction with
php. It’s architecture makes it extremely fast
and easy to customize.

Using a database it is quite a simple task
to record a large number of data and infor-
mation about an object, without necessarily
having to use them all in the construction
of the model or the display of the object in
the museum. Therefore, we can create a well
organized library of all of our artifacts and
exhibits.

The most important records that de-
scribe an object, should be the object’s
type (whether it’s a painting, a sculpture, a
mask etc.), its measurements (height, width,
weight etc.), a title (if there is one ex. ”Mona

Lisa”) and a short description of the artifact.
The description could be simple text or even
a path (relative or not) to an audio file, which
could be used in the museum model. The vis-
itor then could hear a narrated description of
the artifact, by interacting with it.

Other characteristic features that could
be recorded as well are the artifacts’ distin-
guishing features, creation date or period (if
known), its origin, maker’s name and the ma-
terials which were used. These descriptive
items could be easily added even after the
creation of the database through the web in-
terface or any other administration tool for
MySQL databases. Such a tool is eskuel1,
a MySQL databases administration interface
written in PHP. It allow user to manage sim-
ply and fully one or more database without
any advanced knowledge in SQL language.

4 Scripting

VRML was created for describing interactive,
but static, 3D objects and worlds. There-
fore, there was no need for variables when
the specification was written. When creating
a dynamic virtual museum you need to be
able to process data and change many of the
models’ attributes (size, translations, geome-
try, materials etc.). You must also have the
capability of extracting specific fields from a
database record and provide the field values
to the VRML model. Hence, the need for
a scripting language to solve these problems
was born. For all the scripting tasks, php is
used.

PHP is an HTML-embedded scripting
language. Much of its syntax is borrowed
from C, Java and Perl with a couple of unique
PHP-specific features thrown in. It has built-
in functions that allow you to perform vari-
ous functions on a MySQL database and can

be used to solve complex mathematical equa-
tions using libbcmath which is bundled with
PHP (since version 4.0.4). Both of these char-
acteristics made the use of php for the virtual
museum an easy choice.

5 Mathematics

Coordinate {

exposedField MFVec3f point [] (-INF,INF)

}

This node defines a set of 3D coordinates
to be used in the coord field of vertex-based
geometry nodes including IndexedFaceSet,
IndexedLineSet, and PointSet.

The VRML 2.0 naming philosophy is to
give each node the most obvious name and
not try to predict how the specification will
change in the future. If carried out to its logi-
cal extreme, then a philosophy of planning for
future extensions might give Coordinate the
name CartesianCoordinate3Float, since sup-
port for polar or spherical coordinates might
possibly be added in the future, as might
double-precision or integer coordinates.

ElevationGrid

ElevationGrid {

eventIn MFFloat set_height

exposedField SFNode color NULL

exposedField SFNode normal NULL

exposedField SFNode texCoord NULL

field MFFloat height []

field SFBool ccw TRUE

field SFBool colorPerVertex TRUE

field SFFloat creaseAngle 0

field SFBool normalPerVertex TRUE

field SFBool solid TRUE

field SFInt32 xDimension 0

field SFFloat xSpacing 1.0

field SFInt32 zDimension 0

field SFFloat zSpacing 1.0

The ElevationGrid node specifies a uni-
form rectangular grid of varying height in the
Y=0 plane of the local coordinate system.

1http://www.phptools4u.com/scripts/eskuel/?lang=english

The geometry is described by a scalar array
of height values that specify the height of a
surface above each point of the grid.

The xDimension and zDimension fields in-
dicate the number of elements of the grid
height array in the X and Z directions. Both
xDimension and zDimension must be greater
than or equal to zero. The vertex locations
for the rectangles are defined by the height
field and the xSpacing and zSpacing fields:

Thus, the vertex corresponding to the
point P[i, j] on the grid is placed at:

P[i,j].x = xSpacing / i

P[i,j].y = height[i + j / xDimension]

P[i,j].z = zSpacing / j

where 0 <= i < xDimension and 0 <=
j < zDimension, and P [0, 0] is height[0]
units above/below the origin of the local co-
ordinate system.

The colorPerVertex field determines
whether colours specified in the colour field
are applied to each vertex or each quadrilat-
eral of the ElevationGrid node. If colorPer-
Vertex is FALSE and the color field is not
NULL, the color field shall specify a Color
node containing at least (xDimension −
1)/(zDimension − 1) colours; one for each
quadrilateral, ordered as follows:

QuadColor[i, j] = Color[i+j/(xDimension−
1)]

where 0 <= i < xDimension − 1 and
0 <= j < zDimension − 1,
and QuadColor[i, j] is the colour for the
quadrilateral
defined by height[i + j/xDimension],
height[(i + 1) + j/xDimension],
height[(i + 1) + (j + 1)/xDimension] and
height[i + (j + 1)/xDimension]

If colorPerVertex is TRUE and the color

field is not NULL, the color field shall specify
a Color node containing at least xDimension
/ zDimension colours, one for each vertex,
ordered as follows:

V ertexColor[i, j] = Color[i+j/xDimension]

where 0 <= i < xDimension and 0 <=
j < zDimension, and V ertexColor[i, j] is
the colour for the vertex defined by height[i+
j/xDimension]

The normalPerVertex field determines
whether normals are applied to each vertex
or each quadrilateral of the ElevationGrid
node depending on the value of normalPer-
Vertex. If normalPerVertex is FALSE and
the normal node is not NULL, the normal
field shall specify a Normal node containing
at least (xDimension−1)/(zDimension−1)
normals; one for each quadrilateral, ordered
as follows:

QuadNormal[i, j] = Normal[i +
j/(xDimension − 1)]

where 0 <= i < xDimension −
1 and 0 <= j < zDimension −
1, and QuadNormal[i, j] is the nor-
mal for the quadrilateral defined by
height[i + j/xDimension], height[(i +
1) + j/xDimension], height[(i + 1) +
(j + 1)/xDimension] and height[i + (j +
1)/xDimension]

If normalPerVertex is TRUE and the nor-
mal field is not NULL, the normal field shall
specify a Normal node containing at least
xDimension / zDimension normals; one for
each vertex, ordered as follows:

V ertexNormal[i, j] = Normal[i +
j/xDimension]

where 0 <= i < xDimension and 0 <=
j < zDimension, and V ertexNormal[i, j]
is the normal for the vertex defined by
height[i + j/xDimension]

The texCoord field specifies per-vertex

texture coordinates for the ElevationGrid
node. If texCoord is NULL, default tex-
ture coordinates are applied to the geome-
try. The default texture coordinates range
from (0,0) at the first vertex to (1,1) at
the last vertex. The S texture coordinate
is aligned with the positive X-axis, and the
T texture coordinate with positive Z-axis.
If texCoord is not NULL, it shall specify a
TextureCoordinate node containing at least
(xDimension)/(zDimension) texture coor-
dinates; one for each vertex, ordered as fol-
lows:

V ertexTexCoord[i, j] =
TextureCoordinate[i + j/xDimension]

where 0 <= i < xDimension and 0 <=
j < zDimension, and V ertexTexCoord[i, j]
is the texture coordinate for the vertex de-
fined by height[i + j/xDimension]
Group

Group {

eventIn MFNode addChildren

eventIn MFNode removeChildren

exposedField MFNode children []

field SFVec3f bboxCenter 0 0 0

field SFVec3f bboxSize -1 -1 -1

}

A Group node contains children nodes
without introducing a new transformation. It
is equivalent to a Transform node without the
transformation fields.

The bboxCenter and bboxSize fields spec-
ify a bounding box that encloses the Group
node’s children. This is a hint that may be
used for optimization purposes. If the speci-
fied bounding box is smaller than the actual
bounding box of the children at any time,
the results are undefined. A default bboxSize
value, (-1, -1, -1), implies that the bounding
box is not specified and, if needed, is calcu-
lated by the browser.

IndexedFaceSet

IndexedFaceSet {

eventIn MFInt32 set_colorIndex

eventIn MFInt32 set_coordIndex

eventIn MFInt32 set_normalIndex

eventIn MFInt32 set_texCoordIndex

exposedField SFNode color NULL

exposedField SFNode coord NULL

exposedField SFNode normal NULL

exposedField SFNode texCoord NULL

field SFBool ccw TRUE

field MFInt32 colorIndex []

field SFBool colorPerVertex TRUE

field SFBool convex TRUE

field MFInt32 coordIndex []

field SFFloat creaseAngle 0

field MFInt32 normalIndex []

field SFBool normalPerVertex TRUE

field SFBool solid TRUE

field MFInt32 texCoordIndex []

}

The IndexedFaceSet node represents a 3D
shape formed by constructing faces (poly-
gons) from vertices listed in the coord field.
The coord field contains a Coordinate node
that defines the 3D vertices referenced by the
coordIndex field. IndexedFaceSet uses the
indices in its coordIndex field to specify the
polygonal faces by indexing into the coor-
dinates in the Coordinate node. An index
of ”-1” indicates that the current face has
ended and the next one begins. The last face
may be (but does not have to be) followed
by a ”-1” index. If the greatest index in the
coordIndex field is N, the Coordinate node
shall contain N+1 coordinates (indexed as 0
to N). Each face of the IndexedFaceSet shall
have:
1. at least three non-coincident vertices,
2. vertices that define a planar polygon,
3. vertices that define a non-self-intersecting
polygon.

Otherwise, results are undefined.

IndexedLineSet

IndexedLineSet {

eventIn MFInt32 set_colorIndex

eventIn MFInt32 set_coordIndex

exposedField SFNode color NULL

exposedField SFNode coord NULL

field MFInt32 colorIndex []

field SFBool colorPerVertex TRUE

field MFInt32 coordIndex []

}

The IndexedLineSet node represents a
3D geometry formed by constructing poly-
lines from 3D vertices specified in the coord
field. IndexedLineSet uses the indices in its
coordIndex field to specify the polylines by
connecting vertices from the coord field. An
index of ”-1” indicates that the current poly-
line has ended and the next one begins. The
last polyline may be (but does not have to
be) followed by a ”-1”. IndexedLineSet is
specified in the local coordinate system and
is affected by ancestors’ transformations.

OrientationInterpolator

OrientationInterpolator {

eventIn SFFloat set_fraction

exposedField MFFloat key []

exposedField MFRotation keyValue []

eventOut SFRotation value_changed

}

The OrientationInterpolator node interpo-
lates among a set of rotation values speci-
fied in the keyValue field. These rotations
are absolute in object space and therefore are
not cumulative. The keyValue field shall con-
tain exactly as many rotations as there are
keyframes in the key field.

An orientation represents the final posi-
tion of an object after a rotation has been
applied. An OrientationInterpolator interpo-
lates between two orientations by computing
the shortest path on the unit sphere between
the two orientations. The interpolation is lin-
ear in arc length along this path. If the two
orientations are diagonally opposite results
are undefined.

If two consecutive keyValue values exist
such that the arc length between them is
greater than PI, the interpolation will take
place on the arc complement. For example,
the interpolation between the orientations
(0, 1, 0, 0) and (0, 1, 0, 5.0) is equivalent to the

rotation between the orientations (0, 1, 0, 2π)
and (0, 1, 0, 5.0).

Shape

Shape
exposedField SFNode appearance NULL
exposedField SFNode geometry NULL

The Shape node has two fields, appear-
ance and geometry, which are used to create
rendered objects in the world. The appear-
ance field contains an Appearance node that
specifies the visual attributes (e.g., material
and texture) to be applied to the geometry.
The geometry field contains a geometry node.
The specified geometry node is rendered with
the specified appearance nodes applied.

If the geometry field is NULL, the object
is not drawn.
TextureCoordinate

TextureCoordinate
exposedField MFVec2f point []

The TextureCoordinate node specifies a
set of 2D texture coordinates used by vertex-
based geometry nodes (e.g., IndexedFaceSet
and ElevationGrid) to map textures to ver-
tices. Textures are two dimensional colour
functions that, given an (s, t) coordinate,
return a colour value colour(s, t). Tex-
ture map values (ImageTexture, MovieTex-
ture, and PixelTexture) range from [0.0, 1.0]
along the S-axis and T-axis. However, Tex-
tureCoordinate values, specified by the point
field, may be in the range (−∞,∞). Texture
coordinates identify a location (and thus a
colour value) in the texture map. The hori-
zontal coordinate s is specified first, followed
by the vertical coordinate t.

If the texture map is repeated in a given
direction (S-axis or T-axis), a texture coor-
dinate C (s or t) is mapped into a texture
map that has N pixels in the given direction
as follows:

Texturemaplocation =
= (C − floor(C))/N

If the texture map is not repeated, the
texture coordinates are clamped to the 0.0 to
1.0 range as follows:

Texturemaplocation =
= N, ifC > 1.0,
= 0.0, ifC < 0.0,
= C/N, if0.0 <= C <= 1.0.

TextureTransform

TextureTransform {

exposedField SFVec2f center 0 0

exposedField SFFloat rotation 0

exposedField SFVec2f scale 1 1

exposedField SFVec2f translation 0 0

}

The TextureTransform node defines a 2D
transformation that is applied to texture co-
ordinates (see 3.48 TextureCoordinate). This
node affects the way textures coordinates are
applied to the geometric surface. The trans-
formation consists of (in order):
1.a translation,
2.a rotation about the centre point,
3.a non-uniform scale about the centre point.

In matrix transformation notation, where
Tc is the untransformed texture coordinate,
Tc’ is the transformed texture coordinate, C
(center), T (translation), R (rotation), and
S (scale) are the intermediate transformation
matrices,
Tc′ = −C/S/R/C/T/Tc

Transform

Transform {

eventIn MFNode addChildren

eventIn MFNode removeChildren

exposedField SFVec3f center 0 0 0

exposedField MFNode children []

exposedField SFRotation rotation 0 0 1 0

exposedField SFVec3f scale 1 1 1

exposedField SFRotation scaleOrientation 0 0 1 0

exposedField SFVec3f translation 0 0 0

field SFVec3f bboxCenter 0 0 0

field SFVec3f bboxSize -1 -1 -1

}

The Transform node is a grouping node
that defines a coordinate system for its chil-
dren that is relative to the coordinate systems
of its ancestors.

The bboxCenter and bboxSize fields spec-
ify a bounding box that encloses the children
of the Transform node. This is a hint that
may be used for optimization purposes. If the
specified bounding box is smaller than the ac-
tual bounding box of the children at any time,
the results are undefined. A default bboxSize
value, (-1, -1, -1), implies that the bound-
ing box is not specified and, if needed, must
be calculated by the browser. A description
of the bboxCenter and bboxSize fields is pro-
vided in ”2.6.4 Bounding boxes.”

The translation, rotation, scale, scaleOri-
entation and center fields define a geometric
3D transformation consisting of (in order):
1. a (possibly) non-uniform scale about an
arbitrary point
2. a rotation about an arbitrary point and
axis
3. a translation

The center field specifies a translation off-
set from the origin of the local coordinate
system (0, 0, 0). The rotation field specifies
a rotation of the coordinate system. The
scale field specifies a non-uniform scale of
the coordinate system. scale values shall be
> 0.0. The scaleOrientation specifies a rota-
tion of the coordinate system before the scale
(to specify scales in arbitrary orientations).
The scaleOrientation applies only to the scale

operation. The translation field specifies a
translation to the coordinate system.

The translation/rotation/scale operations
performed by the Transform node occur in
the ”natural” order each operation is inde-
pendent of the other.

Given a 3-dimensional point P and Trans-
form node, P is transformed into point P’ in
its parent’s coordinate system by a series
of intermediate transformations. In matrix
transformation notation, where C (center),
SR (scaleOrientation), T (translation), R
(rotation), and S (scale) are the equivalent
transformation matrices,
P ′ = T/C/R/SR/S/ − SR/ − C/P

The second operation, in order, is the
scaleOrientation.The scaleOrientation tem-
porarily rotates the object’s coordinate sys-
tem (i.e., local origin) in preparation for the
third operation, scale, and rotates back after
the scale is performed.

The fourth operation is rotation. It spec-
ifies an axis about which to rotate the object
and the angle (in radians) to rotate.

The last operation is translation. It spec-
ifies a translation to be applied to the object.

”Spaces” is kindof like a coordinate sys-
tem. Well, it actually *could* be a coordi-
nate system, but not always, though in your
case it most likely will be. Also, the system I
am describing follows the ”Camera moves in
space” concept, sure the math is all the same
no matter what you do, but *how* the math
is implemented can lead to interesting prob-
lems if you accidentily switch between ”cam-
era moves” and ”camera stays still”.
Definitions:
Object Space:
The vertex data of an object usually set up
so that 0, 0, 0 is the center of rotation you de-
sire. World Space:
A space where all object’s vertex data(for all
objects) are represented with respect to ONE

coordinate system centered at 0, 0, 0. View
Space:
Almost like a world space, but what hap-
pens is you translate the camera to the World
Space 0,0,0 position and align it to the cardi-
nal axes. All of the objects in the world are
moved such that thay are in their relative lo-
cations and orientations with respect to the
camera(which is now at 0, 0, 0). Screen Space:
This is the result you get when you project
the View Space Coordinates of the vertex
data for each object via projection equations.
Rotations:

Rotation about the X axis by an angle a:

|1 0 0 0|

|0 cos(a) -sin(a) 0|

|0 sin(a) cos(a) 0|

|0 0 0 1|

Rotation about the Y axis by an angle a:

| cos(a) 0 sin(a) 0|

| 0 1 0 0|

|-sin(a) 0 cos(a) 0|

| 0 0 0 1|

Rotation about the Z axis by an angle a:

|cos(a) -sin(a) 0 0|

|sin(a) cos(a) 0 0|

| 0 0 1 0|

| 0 0 0 1|

Projection Matrix:

|1 0 0 0| |

|0 -1 0 0| * |

|0 0 1/d 0| |

|0 0 0 1| |

| |x| | x’ |

transform | * |y| = |-y’ |

matrix | |z| |z’/d|

| |1| | 1 |

d =W / 2*tan(a/2)

Figure 2: VRML, MySQL and php connection diagram

W = screen width in pixels
a = a desired Field of View (normally π/3 to
π rad)

6 Web interface

All the tasks concerning the administrating
or use of the virtual museum, are completed
through an easy to use web interface. Firstly,
one should login either as an administrator or
a simple user to identify himself to the sys-
tem.

After an administrator is identified several
options are presented. An administrator can
add or remove new artifacts in the database.
He could also view and/or modify an exist-
ing record. Viewing all the records should

be considered an obvious option, given the
built-in MySQL functions that php has, thus
making it possible for the administrator to
sort and view all record by their id number,
type, title or any other field. An administra-
tor can also, after viewing the first, automat-
ically constructed model, rearrange manually
the position of certain artifacts.

A visitor can only view the existing
records in the database. Even then, specific
fields could be hidden if the administrator
wishes so. The visitor could also personalize
the museum to his interests and then view
the model. For example, a musician visit-
ing a medieval museum could choose to view
only the medieval items which are relative to
music (instruments, musicians’ clothes etc.).
His choices can be stored in a ’cookie’ so he
can view the same model later on.

7 Interoperability

VRML allows the creation of platform-
independent 3D objects, described in text

files, which can then be displayed on any
computer platform for which an appropriate

browser exists or plugin. Since today, many
VRML browsers have been created and for
different platforms.2 Some of these browsers
are ported to a great number of popular plat-
forms, like Windows, Linux, MacOSX, Java
or Unix and it’s variants (BSD, IRIX, Solaris
etc).

Similar is the case with MySQL which
has full server support for Windows XP/2003,
MacOSX, Solaris, Linux, BSD, HP-UX, AIX,
Netware, OpenServer, IRIX and others3.

The most common PHP installation is
probably the PHP module running with
Apache on Linux or a UNIX-variant. But
PHP also works on Windows NT and 9x,
as well as with a number of other Web
servers. You’ll find more documentation
floating around on the Web that’s specific to
the Apache/Linux/PHP combo, but it isn’t
by any means the only platform that PHP is
supported on4.

8 Acknowledgments

The current paper is supported by the
SEEArchWeb: An Interactive Web-based
Presentation of South-Eastern European Ar-
chaeology project - a SOCRATES pro-
gramme, with grant agreement number
110665-CP-1-2003-1-MINERVA-M.

9 Conclusion

We have presented a Dynamically created
Virtual Museum. Building a custom museum
is now easy for every visitor of the museum
or any museum executive, through an easy to
use interface.

VRML was chosen primarily because it’s
an open, web-based protocol. Although there

is a newer protocol available, called ’x3d’, de-
signed by the same team (w3c) as a replace-
ment for VRML, we believe that VRML is
more mature, with more tools and viewers
available.

Although, the whole project was build
using non-proprietary tools, a step forward
to improving would be to support more
databases and probably export both VRML
and X3D models.

References

[1] MySQL database
http://www.mysql.com

[2] VRML, Web3D Consortium
http://www.web3d.org/

[3] Copyright 1997-2004, The PHP Group
http://www.php.net

[4] The VRML Pepository
http://www.cs.nchu.edu.tw/ tjsheen/martin
/web3d/bk2.htm

[5] Real world use of XML, XSLT and Web
Services in Archaeology
http://www.caaconference.org/

[6] Virtual views of the West House
http://www.caaconference.org/

[7] CAA2003 Ausserer, K.F., Bo”rner, W.,
Goriany, M. and Karlhuber-Vo”ckl, L.
(eds) 2004. Enter the Past. The E-way
into the four Dimensions of Cultural
Heritage. CAA 2003, Computer Appli-
cations and Quantitative Methods in Ar-
chaeology.

2http://www.web3d.org/applications/tools/viewers and browsers
3http://www.mysql.com/support/supportedplatforms.html
4http://gr2.php.net/downloads.php

[8] CAA99 Fennema, K. and Kamermans,
H. (eds) 2004. Making the connection
to the Past CAA99. Computer Applica-

tions and Quantitative Methods in Ar-
chaeology.

