
Sheaf Tools for Encryption

Elena Şendroiu
Université Paris 7 - Denis Diderot

Abstract

This paper proposes the use of sheaf theory in security
encryption in parallel and distributed computing systems.
So, we exploit the architecture of distributed computing
systems. In particular, we are using a general notion
of sheaf as a functor on a category with a Grothendieck
topology, i.e. a site. Sheaf properties give data recon-
stitution. This can be used in distributed encryption and
authentication. In particular, our sheaf definitions provide
computation tools to accomplish these goals, hence we
have made optimal procedures for construction and val-
idation of sheaves. Thereafter, we describe an encryp-
tion algorithm and an authentication method by sheaves.
Moreover, we have introduced a new notion in sheaf the-
ory on a site, family for matching, in order to simplify the
sheaf definition more. This has given us the possibility
to construct an optimal encryption algorithm by sheaves.
In addition, the generated matching family, from a family
for matching, is used to verify data integrity.

1 Introduction

First note that, before the doctoral studies the author
worked in computer security research (anti-virus research,
software protections, cryptography and authentication).

This paper proposes the use of sheaf theory in security
encryption in parallel and distributed computing systems.
In particular, we are using a general notion of sheaf as
a functor on a category � equipped with a Grothendieck
topology � , i.e. a site �� � ��. These notions are explained
in appendix A.

It results from sheaf properties the following relation:

a value is in correspondence with a set of values dis-
tributed on certain points.

This is the relation that we propose to be used in dis-
tributed encryption. It follows that we can exploit the
architecture of distributed computing systems. More-
over, a complex architecture gives a richness of bijections.
Thereafter, we are beginning to connect parallel and dis-
tributed computing systems with sheaf theory. First of all,
the base category � , used in our modelling, is generated
by a network. The objects are network nodes and the ar-
rows are connections between nodes. More clearly, this is
the associated category to the network’s graph. We will
see, in this paper, that all computation tools are building
from the base category that is provided by the architecture
of distributed computing systems. So, the following sec-
tion titled Framework presents how we can compute sheaf
tools for accomplishing our goals.

2 Framework

As necessary background, appendix A presents a short
synthesis of sheaf theory on a site. More detailed expla-
nations are in [2, 4]. Here, we give some ideas about this.
For example, we say only that a Grothendieck topology
(def. A.5) is a collection of sieves that satisfy some axioms.

2.1 Sieves

Definition 2.1 Given a category � . Given an object � of
� , a sieve on � is a family � of arrows with codomain �
such that: if � � � and the composition � Æ � is defined

then �Æ� � �, i.e. sieve rule. A sieve on a point (node) �
is thus a family of arrows with the same codomain � and
is closed under left composition. For example the sieve
presented in figure 1, is generated by the arrows � Æ � and
�. By the sieve rule, this sieve contains also the arrows
� Æ � Æ � and � Æ 	.

C

f

f

h
h

B
A

r

q
p

p

E

E
D

A
B

F

Figure 1:

So, a sieve is a modelling of any data-processing con-
nection. Since it may have many arrows between two
nodes and back arrows then a sieve has a richer and more
interesting structure than a tree. More precisely, a sieve is
a kind of extension, because the old structure is preserved.
Moreover, it is up graded by the sieve rule which provides
a new structure.

Thereafter we can determine the collection of sieves on
any node from the architecture of systems.

2.2 Generating Procedure of Sites

Definition 2.2 A site �� � �� is a pair consisting of a small
category � and a Grothendieck topology � on � . A
Grothendieck topology � (def. A.5, app. A) is a col-
lection of sieves that satisfy some axioms. In particu-
lar, a sieve of a Grothendieck topology is called cover-
ing sieve. The use of sites is necessary for defining the
sheaves on a site. Since, the verification of the axioms of
a Grothendieck topology is algorithmisable, in [4, 6] we
have described an algorithm for generating Grothendieck
topologies from the base category. In particular, in our
modellings, the base category corresponds to the net-
work’s graph. More exactly, from the architecture of dis-
tributed computing systems we can generate all possible
Grothendieck topologies on this as a base category. In

other words, sieves, and in particular, sites are given from
the architecture of systems.

Then we can suppose a Grothendieck topology, generated
by the algorithm described in [4, 6], on the base category.

2.3 Validation and Construction of Sheaves

A presheaf
 on � is a functor
 � � �� �� Sets.
The collection of presheaves on � gives the category of
the presheaves Sets��

��

Any presheaf is a colimit of a di-
agram of representable functors [2].

Definition 2.3 We call representable functor on point �
the functor � � ��� � Hom� ��� �� � � �� �� Sets,
where � � �� Sets�

��

is the Yoneda embedding [2].
Hence ���� is the set of all arrows from node � to node
�. For any � � � �� �, ���� � ���� �� ���� is
defined by ������� � � Æ �. This results also from the
architecture of systems. Moreover, any diagram of rep-
resentable functors corresponds to a diagram of the base
category (lemma A.4, app. A).

Consequently a presheaf is provided clearly starting from
the architecture of systems.

A sheaf � for a Grothendieck topology � is a presheaf
which satisfies the sheaf condition on the site �� � ��
(def. A.8, app. A). The category of the sheaves Sh�� � ��
on a site �� � �� is a subcategory of the category of the
presheaves Sets��

��

We know that a presheaf can be gen-
erated from the base category. Then, by using the associ-
ated sheaf functor [2, 4] we can associate a sheaf to any
presheaf
 for a certain Grothendieck topology � . There-
after, we have given a construction algorithm of sheaves
in [4, 6]. The validation process supposes the verifica-
tion of the sheaf condition (def. A.8.c). To performing this,
we have used first our sheaf definition provided by prop.
A.10. Moreover, in order to writing an optimal validation
algorithm of sheaves, we have introduced the concept of
family for matching (def. A.13, app. A) that allows to re-
formulate the sheaf definition A.8. In addition, by using
the notion of families for matching we have defined in [4]
another associated sheaf functor (th. A.24). This allows
us to write an algorithm that generates efficiently sheaves.

Consequently a sheaf is also provided starting from dia-
grams of the base category that is determined by the ar-
chitecture of systems.

2.4 Reconstitution and Data Integrity

By definition A.8.a, a matching family of a sheaf � on
a site �� � ��, for a covering sieve � of � � � , is denoted
by ��� � ��dom����� �� � � � ��� � ������������ ,
where �� � � � ������� �. The collection

�
������ �

��dom�������� is as a set of possible results, these re-
sults are partial or final for each execution generated by
the arrows of the cover �. If this results set satisfies the
local aspect, i.e. all ��� are given locally by �� by ap-
plying it the procedure����, then there is a unique list of
initial attributes (locally input), called amalgamation (def.
A.8.b), which determines all the executions. Thereafter,
if there are consistent partial informations then we can re-
constitute all the process.

Consequently, it follows that this can be applied to veri-
fying data integrity in parallel and distributed computing
systems.

3 Security of Systems by Sheaves

In this section, we exploit the sheaf condition on a site.
So, sheaf properties give data reconstitution. This can be
used in distributed encryption and authentication. The
base category, used in our modelling, is generated by a
network. The objects are network nodes and the arrows
are connections between nodes. More clearly, this is the
associated category to the network’s graph. Then we can
suppose a Grothendieck topology, generated by the algo-
rithm described in [4, 6], on the base category. In addition,
our sheaf definitions provide computation tools to accom-
plish this goal. In fact, section 2.3 presents how can com-
pute sheaf tools. So, we have seen that we may generate
sheaves for this process, in accordance with [4, 6], start-
ing from diagrams of the base category. Note that, from
a large network one can generate a big sheaf i.e. one can
make choices from several diagrams of the base category.

3.1 Encryption by Sheaves

We know that a matching family of a sheaf � on a site
�� � ��, for a covering sieve � of � � � , is denoted
by ��� � ��dom����� �� � � � ��� � ������������
(def. A.8, app. A). Section 2.4 interprets it as a set of par-
tial or final possible results. These results are produced

from executions generated by arrows of �. By the sheaf
condition (def. A.8 app. A), every matching family is
generated by a unique amalgamation � � ����. More-
over, there is a bijection between them, expressed by

Nat����� 	� Nat������� 	� ����� ���

where the sieve � is regarded as a subfunctor of ���
(prop. A.9, app. A). Consequently, sheaf properties give
data reconstitution useful in computation.

More precisely, a sheaf has the property that there ex-
ists a unique amalgamation (an element � in a set) for any
matching family of any cover of any object in the cate-
gory. The element (amalgamation) � can be thought as a
seed which gives rise to a unique set of elements obtained
by means of a sieve and distributed in the network nodes
(the matching family corresponds in fact to this set).

Thereafter, we propose the use of sheaf theory in dis-
tributed encryption and authentication. By definition, en-
cryption is the translation of data into a secret code (plain-
text �� ciphertext). Encryption is the most effective way to
achieve data security. The reverse of encryption is called
decryption (ciphertext �� plaintext).

So, the encryption process, by a sheaf �, is done by
steps in conformity with the procedures ���� for all �
of a cover �. Note that we must choose some cover �
such that ���� has not a reasonable complexity for any
� � �. This encryption is adapted to distributed systems.
We can also use disjoint subsheaves (prop. A.21) to encrypt
differently. Since a distributed encryption by a sheaf cor-
responds to a unique input by the sheaf universal property,
we can find a decryption of it. More detailed explanations
of this idea are given in sections 3.2, 3.3 and 3.5.

By using the concept of family for matching (def. A.13,
app. A), which we have introduced, our lemma A.18 sim-
plifies the sheaf condition that is expressed by

���� 	� �� �� ��
�
���

������������������� ����� ���

�������� ��� �
��	�����Æ� � �	Æ�� � ��� �� � �	 ���

and ��� � �� �� �� � � �� is a minimal covering
family, such as any arrow does not factorize itself by an-
other, which generates a covering sieve �. This is a bi-
jection between amalgamations and families for match-
ing. In addition, any family for matching generates a

matching family of the same way that a minimal cover-
ing family generates a covering sieve and by using match-
ing family condition. If there is no restriction provided
by the compatibility condition (2) then there are only
free sites hence the sheaf condition is a simpler bijection
���� 	�

�
��� �����������

For example the sieve presented in figure 1, sec. 2.1, is
generated by the arrows � Æ � and �. By the sieve rule,
this sieve contains also the arrows � Æ � Æ � and � Æ 	.
So, the corresponding minimal cover family of the sieve
� is the arrows � Æ � and �. Given a family for matching
����� �
� distributed in the corresponding points ���.
Then the matching family, generated from this family for
matching, is ����� ���� � �
� �
�� distributed in the cor-
responding points ������ � , where ��� � � � ���� and
�
 �	 � �
�. In [4], we have proof that any amalgamation
of such a family for matching is also an amalgamation of
the generated matching family and reciprocally. It is for
all these reasons that we must promote the use of families
for matching.

The public key can be the network’s graph (or even ar-
rows of the covering sieves). Since a family for matching
allows less computations, the secret key can be a minimal
covering family (or even the used Grothendieck topol-
ogy). In addition, the generated matching family (from
a family for matching) is used to verify data integrity.

Moreover, the matching families are generated to divert
intruders into traps. So, our ciphertext is given by families
for matching as certain parts of encrypted data. This man-
ner of selecting certain parts of encrypted data by secret
key in the decryption process provides difficult obstacles
to intruders.

3.2 Encryption Algorithm Description

Now, we present an encryption algorithm by sheaves.
So, our proposal is to assign the elements of ����, for a
given node �, to the characters (i.e. secret codes). If the
set ���� is too large we can thus assign many codes to
characters. It is recommended that at least the more fre-
quent characters have several codes. For this assignation,
we can use a classical algorithm with secret key for the
following operation: List of characters �� ����.

In addition, we can share the subsheaves on groups of
characters, in particular a subsheaf contains the more fre-

quent characters. Then these codes will be encrypted by
the sheaf � or certain subsheaves of � as sets of another
codes distributed on the network.

For example the character “A” is first coded by � �
����, hence, by using a minimal covering family �� �� � �
��, its encryption is �� � ��� � � ��, where � � �� �
��������. Since the collection �� � ��� � � �� has the
amalgamation �, from lemma A.16, app. A, it is a family
for matching. This is distributed on the network i.e. each
� � �� is put in the corresponding node ������� ���. In
particular the character “A” is a frequent character hence
it has, in addition, another codings.

An interesting idea is to assign the elements of���� to
some strings of characters or even words of the plaintext.
For example: ��� �� ��, ��� �� ��, ...

Generally, a set of the form ��	 � ����� � ��
is encrypted in the following set of sets ���	 � �� �
���������� � ��� � � �� that distributed on the net-
work i.e. any node ����������, where � � � , contains a
set of the form ��	 � ��� � ��.

By sheaf condition, any set, that satisfies the com-
patibility condition (2), of the form ���� � � � �� ��

��� ����������, where ��� � �� �� �� � � ��
is a minimal covering family, corresponds to a unique
code � � ����. This allows the decryption of sets as
���� � � � �� distributed on the nodes ��������� � � ��.
For example, in figure 2, the plaintext �!"�# is encrypted
in two distributed ciphertexts ��!�"���#� and ���!��"�����#��.
By sheaf condition, we will obtain the value � from the
pair ���� ����, ! from �!�� !���, etc.

Moreover, we put random data or false messages on
transparent nodes of covering sieves (i.e. some arrows
of their minimal covering families can factorize in these
nodes by arrows which are not in corresponding covering
sieves) to produce false tracks for adversaries. We can
also put random data on other covers of network, other
than secret covers, in order to grow uncertainty. In addi-
tion, this random data is an encryption of other random
data. These encryptions are produced especially by other
sheaves or subsheaves of the used sheaf. Consequently, in
this case adversaries are in a growing uncertainty.

Thereafter, the secret key can be: the codes of charac-
ters (or the secret key of the assign algorithm), a minimal

a

b

c

d

a’

b’

d’

e

e’

a"

e"

d"

c"

b"

c’

Figure 2: Distributed encryption

covering family (or even the used Grothendieck topol-
ogy), the sheaf (or the diagram of the base category which
generates this sheaf). The public key can be the network’s
graph (or even arrows of the covering sieves).

The clear meanings of the secret keys in the proto-
cols are the nodes which contain the real ciphertext. By
using a public key which is some arrows of a covering
sieve we can determine the secret nodes from the used
Grothendieck topology that is a secret key.

In addition, the encrypted data recovery can be done by
using the authentication method by sheaves described in
section 3.7.

3.3 Decryption

The decryption of encrypted data (by our method) is
done in the following way:

1. If the minimal covering family, that gives the nodes
which contain the our ciphertext, is not fixed (known
as secret key) then we determine it by using the pub-
lic key which is some arrows of the corresponding
covering sieve;

2. Next we can select parts of the encrypted data to ob-
tain our ciphertext;

3. We can now check the data integrity by using the
matching family condition since encrypted data are
matching families generated from our ciphertext;

4. We obtain the plaintext by considering that there is a
unique amalgamation and performing the reverse of
assign process i.e. ���� �� List of characters.

There are two strategies that achieve goal 4: (I) com-
puting codes for a long ciphertext or (II) searching amal-
gamations for a short ciphertext. We compute as in sheaf
encryption process, by using the secret key of assign algo-
rithm, the sets of encrypted codes that correspond to the
List of characters. Then we can decrypt our ciphertext
distributed in the secret nodes. Note that we can deter-
mine only the codes of certain characters (eg, the more
frequent) and in the case when these are not sufficient to
decrypt the ciphertext then we seek another codes.

3.4 Intrusion Detection by Sheaves

Note that, by sheaf universal properties we can detect if
the ciphertext is modified since we cannot obtain a unique
amalgamation. Thereafter, we cannot perform the decryp-
tion process if the ciphertext is modified by an attacker or
falsified. This is in addition an intrusion detection system
by sheaves.

3.5 An example

For example we perform the plaintext

� �� �����

First we assign the elements of ���� to the characters of
this plaintext, i.e. � �� �� � � � �� ���� � � �� �� � ��
��� � � �� ���� � � �� �
� # �� ��� � 	 �� ��� # �� ��� ,
where �� � ���� � �� ��� ���� � �
� ��� � ��� ��� are in
����. Note that, since are more frequent the characters
“ “ (i.e. space) and # have two codes.

For encryption, we use the corresponding minimal
cover family of the sieve �, figure 1, that is the arrows
� Æ � and �. So, the set

��� � ���� � �� ��� ���� � �
� ��� � ��� ����

is encrypted in the following set of sets (i.e. a set of fam-
ilies for matching)
 � ���� � �� Æ ��� �� � ��� ����� � �� Æ ��� ���� �

��� �� � �� Æ ��� � ���� ��� � �� Æ ��� �� ���� ����� �
�� Æ��� ���� ���� ��
 ��� Æ��� �
 ���� ���� ��� Æ��� ��� �

��� ��� � �� Æ ��� �� � ��� ���� � �� Æ ��� ��� � ��� that
is our ciphertext and is distributed on the secret nodes �
and �.

So, the node � contains the set ��� � �� Æ ��� ���� � �� Æ
��� � � �� Æ ��� �� � �� Æ ��� ���� � �� Æ ��� �
 � �� Æ
��� ��� � �� Æ ��� �� � �� Æ ��� ��� � �� Æ ��� and the node
� contains the set ��� � �� ���� � �� � � �� �� � �� ���� �
�� �
 � �� ��� � �� �� � �� ��� � ��.

Note that, we use here only families for matching. In
addition, the generated matching family (from a family
for matching) is used to verify data integrity. So, the set
��� � ���� � �� ��� ���� � �
� ��� � ��� ���� is encrypted
in the following set of sets (i.e. a set of matching families)
� � ���� � �� Æ ��� ��� � �� Æ � Æ ��� �� � �� �� � �� Æ

	��� ����� � �� Æ ��� ����� � �� Æ � Æ ��� ���� � �� ���� �
�� Æ 	��� �� � �� Æ ��� � � �� Æ � Æ ��� � � �� � � �� Æ
	��� ��� � �� Æ ��� �� � �� Æ � Æ ��� �� � �� �� � �� Æ
	��� ����� � �� Æ ��� ����� � �� Æ � Æ ��� ���� � �� ���� �
�� Æ 	��� ��
 � �� Æ ��� �
 � �� Æ � Æ ��� �
 � �� �
 � �� Æ
	��� ���� � �� Æ ��� ��� � �� Æ � Æ ��� ��� � �� ��� � �� Æ
	��� ��� ��� Æ��� �� ��� Æ�Æ��� �� ��� �� ���Æ	��� ���� �
�� Æ��� ��� � �� Æ�Æ��� ��� ��� ��� � ��Æ	��� distributed
in the corresponding points ����� and � .

In the decryption operation, we must extract from�,
more precisely from the secret nodes � and �, in order to
verify first data integrity.

Since an amalgamation of a family for matching is
also an amalgamation of the generated matching fam-
ily and reciprocally, we are using the set in the de-
cryption process. In this case, we have a short cipher-
text. So we will search amalgamations, i.e. we will
use strategy II. In decryption the ciphertext is seen
as �������� ���
�� ��������� �����
�� ������ ��
��
������� ���
�� ��������� �����
�� ��
���� �
�
��
�������� ����
�� ������� ���
�� �������� ����
��.

By the sheaf condition there is a unique amalgamation
�� such that �� � �� Æ �� � ����� and �� � � � ���
 for
any $ in ��� !%�� �� �� !%�� �� #�� 	� #��. For finding
the amalgamations

��� � ���� � �� ��� ���� � �
� ��� � ��� ����
we search some � in ���� until all these amalgamations
are founded.

In this case, the node & is transparent. In other words,
the arrow � is not in the sieve �, but � contains the ar-
rows �� and ��� that are factorized by � . Hence �� is

in the minimal covering family of �. So, we can put in
this node random data or false messages to divert intrud-
ers into traps.

3.6 Discussion

By our concept of family for matching, the sheaf prop-
erties are concretized in an explosion of bijective map-
pings between a set and a cartesian product of several
sets. This richness of bijections generated by sheaf theory
from a network architecture can be thus used in encryp-
tion. Fortunately, we ourself have discovered the notion
of family for matching. If not, i.e. if this algorithm han-
dles only matching families then has a weakness. It fol-
lows that the expert adversaries could broke it if they will
discover this notion of family for matching and the secret
keys.

It is recommended that the texts of big size should be
shared in many parts in order to encrypt on different cov-
ers on the network. In this case, we may choice some
covers where the minimal covering family contains only
an arrow and thus the ciphertext will have then the same
size as the plaintext.

In addition, a software built in accordance with our
ideas can provide a real example. So, it remains for us
to try this out.

3.7 Authentication by Sheaves

The system safety must ensure the data integrity and
confidentiality. The access control accomplishes them by
using an authentication system.

In particular, the richness of bijections generated by
sheaf theory from a network architecture can be used
in authentication. So, the correspondence ��� between
matching families and amalgamations in sheaf theory can
be used in password authentication [4, 5, 7]. Thereafter,
like in the preceding section, the base category is gener-
ated by a network, i.e. the associated category to the net-
work’s graph. In addition, we may also generate covering
sieves by an algorithm described in [4, 6] and sheaves in
accordance with [4] for this process.

Now, we present our method of authentication by
sheaves. So, a password is an amalgamation, hence a
matching family for a covering sieve corresponds to some

encryptions of the password on distributed network nodes.
In other words, a password correspond to a data set dis-
tributed on network. For example, given a sieve � (fig.
1, sec. 2.1) which contains the following arrows � Æ �,
� Æ � Æ �, �, � Æ 	. Encryptions of a password � are
���, ���� , �
, �
� distributed in the corresponding points
������ � , where ��� � � � ���� and �
 � 	 � �
�. Note
that, the computations �
� and ���� are parallel.

The bijection ��� between matching families and amal-
gamations allows to realize the authentication process.
Therefore, if � is a password of a user and the matching
family is kept by the authentication system, then the au-
thentication process just checks whether or not � gives
rise to the same family of matching. For this exam-
ple, there is a unique password � that corresponds to the
set ����� ���� � �
� �
��, distributed in the correspond-
ing points ������ � , such that � � $ � ��, for all
$ � ���� ���� �� �	�. More precisely, this is a kind of
re-authentication.

Note that, our sheaf definition (prop. A.10, app. A) pro-
vides us matching families for this process and expresses
the unique amalgamation by '�� �, where ' is a match-
ing functor.

The role of the sieves is to indicate the access rights.
Moreover, the use of a covering sieve led to determine
an access cover in a work environment. From the com-
patibility property of a matching family, i.e. local aspect
(all ��� are given locally by �� by applying it the proce-
dure���� as in section 2.4), two equivalent paths allow the
same access.

Consequently, the authentication process must be on cer-
tain covering sieves in which the authentication method
has not a reasonable complexity.

4 Conclusions and Future Work

Sheaf properties give data reconstitution. This can be
used in distributed encryption and authentication. There-
after, we have proposed an encryption algorithm by
sheaves. So, we have began to connect parallel and dis-
tributed computing systems with sheaf theory. It follows
that we can exploit the architecture of distributed com-
puting systems. In addition, we have seen that all com-
putation tools are building from the base category that

is provided by the architecture of distributed computing
systems. Our approach is based on the fact that a sieve
is a modelling of any data-processing connection. Also,
we can determine the collection of sieves on any node
from the architecture of systems, hence we can generate
Grothendieck topologies (sites).

Consequently, the richness of bijections generated
by sheaf theory from a network architecture can be
used in encryption and authentication. In addition, our
sheaf definitions provide computation tools to accomplish
these goals. Since this method is based on a high math-
ematical framework, well adapted to distributed systems,
it could be solved better than it is done by other formal
frameworks.

Note that we can do trap activities. So, ciphertext is
given by families for matching and the matching families
are generated to divert intruders into traps. This manner
of selecting certain parts of encrypted data by secret key
in the decryption process provides difficult obstacles to
intruders. Moreover, we can put in certain nodes random
data to divert also intruders into traps.

It remains for us to try these out. Only, a software built
in accordance with our ideas can provide real examples.
We plan to implement this in the future.

References
[1] C. Kaufman, R. Perlman and M. Spencer: Network Secu-

rity, Private Communication in Public World, Pretince Hall,
(1995)

[2] Saunders Mac Lane and Ieke Moerdijk: Sheaves in Geome-
try and Logic, A First Introduction to Topos Theory. Springer
Verlag (1991)

[3] W. Stallings: Cryptography and Network Security: Princi-
ples and Practice, Second Edition, Pretince Hall, (1999)

[4] Elena Şendroiu: Topos, un modèle pour l’informatique.
PhD thesis. Université Paris 7, (2004)

[5] Elena Şendroiu: From anti-virus to sheaf tools for secu-
rity. In U.E. Gattiker (Ed), EICAR 2004 Conference CD-
rom: Other Contributions (ISBN: 67-987271-6-8) 18 pages.
Copenhagen: EICAR e.V.

[6] Elena Şendroiu: Sheaf Algorithms, SYNASC 2004 Confer-
ence, (Ed. Mirton, ISBN: 973-661-441-7) Timişoara

[7] Elena Şendroiu: Sheaf Tools in Network Security, IASTED-
PDCS 2004 Conference: Cambrige, MA, USA

A Topology of Grothendieck and
Sheaves

An open � of a topological space � is identified with the
unique monomorphism � �� � . In a more general category,
we replace monomorphisms by more general arrows � �� �.

Definition A.1 The functor � � � �� �� Sets is a subfunctor
of the functor � � � �� �� Sets if �� � �� for all � and
each ���� � �� �� �� is a restriction of � ��� for all arrows
� � � �� � of � . Thus � is a subobject of � .

Remark A.2 If � � Hom� ��� �� is a subfunctor then the set
	 � �� � � � ��dom����	 is clearly a sieve on �. Hence, we
can consider a sieve on � as a subfunctor of Hom� ��� ��.

Definition A.3 If 	 is a sieve on � and
 � � �� � is any ar-
row with codomain � then
��	� � ��� cod��� � � and
� �
		 is a sieve on �. This is a change operation of the sieve base.

Lemma A.4 Any diagram of representable functors corre-
sponds to a diagram of the base category.

Demonstration. Given a small category � and ��� in � . By
Yoneda lemma it holds that

Hom �� ������ �����
� �������
� Hom� �����

Definition A.5 Given a category � . A topology (of
Grothendieck) on the category � is a function � which assigns
to each object � of � a collection ���� of sieves on � such as

i) the maximal sieve �� � �� � cod��� � �	 is in ����;

ii) stability axiom. if 	 � ���� then
��	� � ���� for any
arrow
 � � �� �;

iii) transitivity axiom. if 	 � ���� and � is any sieve on �
such that
���� � ���� for all arrows
 � � �� � of
	 then � � ����.

Definition A.6 We say that 	 is a covering sieve (cover) of �
or that 	 covers � if 	 � ����.

Remark A.7 In particular, an ordinary topological space is a
site. So a sieve on an open � is exactly a subset 	 � ����,
where ���� � �� � � is open and � � �	.

Definition A.8 Given a site �� � ��, a presheaf � on � and a
covering sieve 	 of an object � of � . We denote � � � �
� ������, where � � � �dom����.

a) A matching family for	 of elements of� is a function which
assigns to each element � � � �� � of 	 an element
�� � � ��� such as �� � � � ��� � � � �� � in � .
We denote it by ��� � �� � � ��������� �� � ���	��� .

b) An amalgamation of such a matching family is a single ele-
ment � � � ��� such as � � � � �� for all � � 	.

c) A presheaf � is a sheaf (for topology �) if every match-
ing family of any cover of any object of � has a unique
amalgamation i.e. sheaf condition.

d) Separate condition is the sheaf condition with “has a
unique” replaced by “has at most one”.

Since a sieve 	 on � is regarded also as a subfunctor of ��,
a matching family � �� �� for � � 	 is the same thing as a
natural transformation � � 	 �� � . From this the following
proposition holds by using Yoneda lemma [2].

Proposition A.9 � is a sheaf iff for every covering sieve 	 on �
the inclusion 	 �� �� induces an isomorphism Hom�	� � �
�
Hom����� �
� � ��� [2, 4].

In addition, a sieve 	 on � is the same thing as a subcategory
of the category slice � ��. Then we define a matching functor
� � Sets�

��

for a presheaf � by ���� � ���	, where �� �
� �dom����, and � Æ � �� � �� ���	 �� ����	, with
��� � � �������, for all �� �� � 	. This gives the following
new sheaf definition.

Proposition A.10 A presheaf � is a sheaf iff, for all covering
sieves 	 of objects �, any matching functor � � 	�� �� Sets
has a unique extension to � ��. In addition, ����� is the
unique amalgamation [4].

Remark A.11 A matching functor provides clearly a matching
family since the collection of its object values is by definition a
matching family. Thus, this is a computation tool. Hence we
can build a validation procedure of sheaves which verifies if any
matching functor has a unique extension to � ��.

Next, we will introduce the concept of family for matching to
simplify again the sheaf definition A.8. More precisely, this no-
tion provides the base elements for constructing matching fami-
lies by using matching family condition. So, the following lem-
mas will be used to writing an optimal validation algorithm of
sheaves.

Definition A.12 Given a site �� � ��. We call minimal covering
family (m.c.f.) of an object � in � a family of arrows ��� �
�� �� �� � � �	, such as any arrow is not factorized by
another of this family, and generates a covering sieve of �.

Definition A.13 Given a site �� � ��, a presheaf � and a min-
imal covering family ��� � �� �� �� � � �	 of an object
� in � . A family for matching for ���� � � �	 is a func-
tion which assigns to each arrow �� � �� �� � an element

��� � � ����, such that, whenever there are the arrows � and

such that �� Æ � � �� Æ
, where �� � � � , then

��� � � � ��� �
 ����

Remark A.14 Clearly, a family for matching ���� � � � �	 for
���� � � �	 of elements of � is every element of �� �� ���

��	
� ���������� �
��	���Æ� � �� Æ
� � ��� �� � �� �
�	

Remark A.15 Any family for matching generates a matching
family in the same way that a minimal covering family gener-
ates a covering sieve and by using matching family condition
i.e. ���Æ� � ��� � �. Hence, any matching functor is also gener-
ated from a family for matching.

Lemma A.16 If an element ���� �� � �	 of
�

��	
� ���������

has an amalgamation � then this element is a family for match-
ing [4].

Lemma A.17 Any amalgamation of such a family for matching
is also an amalgamation of the generated matching family and
reciprocally [4]. A presheaf � is a sheaf (for topology �) iff
any family for matching of any minimal covering family of all
objects � has a unique amalgamation [4] .

Lemma A.18 A presheaf � is a sheaf for a covering sieve gen-
erated by a m. c. f. ��� � �� �� �� � � �	 iff for all � � � ���
the application � �� �� � ��� � � �	 gives the following isomor-
phism � ���
� �� �� ��

�
��	

� ���������� �
��	��� Æ � �
�� Æ
� � ��� � � � �� �
�	 [4].

Remark A.19 Any presheaf � is a sheaf for the trivial topology
since, for all �, the minimal covering family of the maximal
sieve is only �� and �� ��� is a bijection.

A site �� � �� is called free if for any minimal covering family
���� � � �	 there are no arrows � and
 such that �� Æ� � �� Æ
,
where �� � � � . Hence, in a free site, for any m. c. f. ���� � � �	
every element of

�
��	

� ��������� is a family for matching.

Corollary A.20 If �� � �� is a free site then a presheaf � is a
sheaf for a covering sieve generated by a minimal covering fam-
ily ��� � �� �� �� � � �	 iff for all � � � ��� the appli-
cation � �� �� � ��� � � �	 gives the following isomorphism
� ���
�

�
��	

� ���������

Proposition A.21 Let a sheaf � � Sh�� � ��. A subsheaf �
of � is a subfunctor such that for all � � � , � ���� and for
all cover 	 of � satisfies the subsheaf condition i.e. if �� �
���� for all � � � �� � of 	 then � ���� [2].

Given a site �� � ��. The category of sheaves Sh�� � �� is a
subcategory of the category of presheaves on � . The following
theorems allow us to write an algorithm to generate sheaves.

Theorem A.22 The inclusion functor � � Sh�� � �� ��
Sets�

��

is right adjoint to the associated sheaf functor ! �
Sets�

��

�� Sh�� � ��, where !�� � � ����� and an ele-
ment of ����� is an equivalence class of matching families
� � ��� � � � � �� � � �	� �� � � ���� and �� � " � ����
for all " � � �� � where two such families � � ��� � � � �	
and � � ���� � � 		 are equivalent when there is a common re-
finement # � � � 	 with # � ���� s. t. �� � �� � � # [2].

Remark A.23 Thus, if a topology � is not subcanonic, i.e. rep-
resentable functors are not sheaves, then we can construct the
sheaf !� � �

�� �� �

�� Sh�� � ��. Since any presheaf
is a colimit of a diagram of representable functors [2] then
$
� !��$ �
� !lim� �����
� lim��!������ for any sheaf $.

Consider the map ����
�
�� !����

�
�� � . From the ad-

junction � � ! and Yoneda lemma [2] it results that
����
� Hom���� ���
� Hom���!�����.

In addition, by using the new notion of families for matching
(def. A.13) we have defined in [4] another associated sheaf func-
tor !� that is also adjoint to the inclusion functor. This allows us
to write an algorithm that generates efficiently sheaves.

Theorem A.24 Another associated sheaf functor !� is defined
by !��� � � �� ���� where an element of ����� for any � in �
is an equivalence class of families for matching � � ���� � � �
�	� (���� � � �	 is a m.c.f.) with ��� � � ���������� where
two such families � � ���� � � � �	 and � � ���� � � � �	
are equivalent when there is a m.c.f. of the form ��� Æ %� �
�� Æ %�� � � � � and � � � �	, where � � � � and � � � � , such
that ��� � %� � ��� � %� for all � � � � and � � � � [4].

Lemma A.25 Any equivalence class of matching families is
generated by an equivalence class of families for matching [4].

Moreover, there is a map of presheaves &� � � �� � �

defined for each � � � ��� with &����� � �� � � � � �
�����	� where ����� contains �� and all another arrows of
the maximal sieve on � such that are not factorized by an-
other. For a morphism
 � �� �� � in � the restriction
map � ���� �� � ����� is given by ���� � � � �	 �
 �
���� � � �
������� � �	�	� where ��� � �� � � and

������� � �	� � ����� if �" � � s.t. �� Æ % �
 and
if it does not, is �
� � �� �� '� �� � � (�

� � ��	 [4].

Lemma A.26 (i) A presheaf � is separated iff &� � � �� � � is
a monomorphism. (ii) A presheaf � is a sheaf iff &� � � �� � �

is an isomorphism [4].

