Difference approximation of Hamilton Jacobi equation.
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ANDRZEJ NOWAKOWSKI, IWONA NOWAKOWSKA

Faculty of Mathematics, Universiti of Lodz
Banacha 22, 90-232 £6dz
POLAND
Academy of Humanities and Economics in Lodz
Rewolucji 1905r 52, 90-222 Lodz
POLAND

Abstract: The aim of the paper is to describe numerical approximation of the difference Hamilton-Jacobi
inequality —2c < St ST) 4 (1 2, 8., (t,x)) < e, and to prove its convergence. We find, by nu-
merical construction, a functioft (¢, ) which satisfies the above inequality. The method applied in the paper
bases on the constructions-described in [1] for Bolza problem and significently extended in [3].
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1 Introduction approximate the derivativé.;(t,z) by its differ-
_ . ence SE(Hh’x}z_Sa(t’x), let us assume, uniformly in
Let S(t, ) be aC*(T), T C R'*™", function satis- 7 Then we should still have the verification inequal-
fying Hamilton-Jacobi equation ity of the_dynamic programming
Si(t, @) + H(t, x, —Sx(t,2)) =0, 1) g < S.(t+ h) — S.(t,z) @)
(t,2) €T = [0,5] x A, S(b,z) = I(x), h
+H(t7 y - Mex Yy = <y

whereA is a compact set iR™ with nonempty inte-
rior andi(x) is aC*function in A. That equation is (t,z), (t+h,2)€T.

fundamental in mechanics and becomes very useful _ _

tion of some optimal control or variational problem Hamiltonian is of the form:

then its approximaté. (¢, ) must satisfy approxi-
mate Hamilton-Jacobi inequality (the verification in-
equality of the dynamic programming) see e.g. [2] — min { w (t,z)f(t, ,u) + L(t,m,u)}
or[1]i.e. uel | Oz

H(t,z,w(t,x))

—e < Sq(t,x) + H(t,z, —Sep(t,2)) <0,  (2) where (t,z,u) — f(t,z,u) and (t,z,u) —
L(t,z,u) are Lipschitz continuous functions de-

(t,z) € T , and the boundary conditiof{(z) < fined inT x U with values inR"™ and R, respec-
S(,z) < l(x) +e(b—a),(byxr) € T. We can tively, U C R™ is compact. That means that



S:(t,z) from (2) is now ans—value function for
suitable control problem with Lagrangidnand ve-
locity f of the statex(t).

The aim of the paper is to describe numerical
approximation of the difference Hamilton-Jacobi in-
equality (3) and to prove its convergence i.e. we
want to find by numerical construction a function
S:(t,z) in T which satisfies (3). The method ap-
plied in this paper bases on the constructions de-
scribed in [1] for Bolza problem and significently
extended in [3]. Here we make some further exten-
sions and simplification of both papers according to
the problem considered in this paper.

2 Construction of the approximation

We begin the construction of the-value function
which should satisfy (3) by choosing some arbi-
trary function(t, z) — w(t, x) of classC?(T'), that
satisfies the boundary conditionv(b, z) = I(x),
(b,x) eT.

We define orl” a function(t, z) — F (¢, x) that
corresponds to the right-hand side of the Hamilton-
Jacobi difference equation:

w(t+h,x) —w(t, x)
h

F(t,x) := 4)

+min {g:(t, D) f(t 2, u) + L(t, 2, u)} |
The function(t,z) — F(t,z) is a Lipschitz

function onT, asU is compact and the functions

in bracket{} are Lipschitz continuous. Sincg is

a compact set, the functiofi(-, -) is bounded ifl’

from below and above by, andx,, respectively:

kg < F(t,xz) < kg forall (t,z) eT.  (5)
Generally, function?'(-, -) has values iff" of differ-
ent signs, therefore it does not satisfy the verification
inequality of the dynamic programming (3), which
requires thatF'(-, -) has non-positive values greater
than —2¢ and less tham on wholeT. In order to
find a function that satisfies the verification inequal-
ity of the dynamic programming we definea family
of functions(t,z) — Ff(t,z), k € N, in T. These
functions will satisfy for allk > k. the inequality
given in (3), wheré:. € N is a number that depends
on chosen, such that. — oo fore — 0. The func-
tion Ff(-, -) for everyk is described by the following
formula and the construction ¢f, z) — w¥(t,z),

k € N is described below:

h

Ff(t,x) =

+min
uelU

{%lif(t, 2)f(t,z,u) + L(t, z, u)}

for every(t,x) € T.

(6)

We begin the construction aff (-, -) from defining
its domain. Let us divide the intervak,, x| C
R, being the image of the séf in the mapping
(t,x) — F(t,z), creatingk subintervally;, y;+1] ,
i€ {l,...,k},suchthatry = 11 < ya < ... <
Yk+1 = kg, and that for alli € {1,...,k} we
have|y;+1 — yi| = % |kg — ka|- Obviously it is the
equipartition of the intervals,, x4]. Let us intro-
duce the following symboly;, := % |kg — Kal -

Now we divide sefl” into following subsets”F,
jed{l,... k}:

Py
Pk

(t,x) €Ty < F(t,z) <y2} (7)
(t,l‘) €rT: yj < F(ta .T) < yj+1}(:8)
)

The setsPF, j € {1,...,k} constitute a cov-
ering of the sefl’, i.e. for everyi,j € {1,...,k},
i#j, PENPF =g and;_, P =T.

Now define auxiliary functions(¢,x)
wh ;(t,z) and(t,x) — Fy;(t, x) on setsP¥, j €
{1,...,k} as follows:

{
;0 =
j € {2,...,k},

—

Ujlij(t, $) = w(t, $) + y]+1(b — t), (t’ ZL‘) c ij’

(10)
ko(t+h,x)—wk(t,
n d 200 t t L(t
+min ¢ —- (t,z)f(t,z,u) + L(t,z,u) ¢,

(t,x) € Py. (11)

By simple calculation we obtain that:

Fli(tz) = P(t,2) -y, (to) € PF, (12)

which means that the following inequality holds:

Nk < Flk,j(tvx) < 07 (t,.%’) € P]ka ] € {177k}
(13)



It is easily to notice that for some fixed> 0 we
can always choose suéh, that for everym > k.
we haves < F"(t,z) < 0.

We define the functionvf (-, -) (for fixed k) in
T =J_, P as follows:

U)’f(t, x) = wlf’](t,a:)

for (t,z) € Py, je{l,... .k}

(14)
(15)

Obviously for everyk > k. the functiomw? (-, -)
satisfies the inequality of the verification theorem of
the dynamic programming for fixed > 0, and sat-
isfies the boundary condition of this theorem, yet
it is not a function of clas€'!(T") (probably it is
even a non-continuous function), and thus it is not
an e—value function. In order to satisfy the as-
sumptions of the verification theorem we have to
smoothen the functionvf(-,-) by convoluting it
with a function of clasg’>°(R"*+!) having compact
support.

From now on we assume that(the number of
setsPy) is a fixed natural numbey, € {1,...,k},
andg > 0 is some real number.

The functionpg : R x R” — R of class
C>(R™*1) having compact support, wheflec R,
is defined as follows:

Let py R x R* — R be a function of
classC>(R"*!) having compact support, such that
Jgns1 p1(t, x)dtdz = 1 andsuppp; C By (R" 1),
wheresuppdenotes the support, arigl. (R"+!) for
anyr € Ris a ball inR"*! with center in0 having
radius7. Obviously pg(t,z) = ﬁpl(%,%). It
is easy to see that such functipp(-, -) is infinitely
smooth function having compact support awupp
psg C Bg(R"™!) and fBﬁ(RnH) ps(t, x)dtde =
fRnH pp(t,x)dtdr = 1.

Let now define for eacl¥ € R a new function
(t,z) — wiP(t, z):

wy (1, x) = (w} * pg) (¢, )

where the *" denotes convolution.

By known theorem we have for every and

g the functionw’g’ﬁ(~, -) is of classC>°(T"), what

means that the corresponding functioghz) —
Fz’“’ﬁ(t, x), having following definition:

(16)

whP (¢ + b, z) — wiP(t,x)
h

P (t,x) = (17)

uelU T

owh’
—i—min{ (92 (t,z)f(t,x,u) + L(t,x,u)}

is Lipschitz continuous iff".

3 The proof of the convergence

In this section we will try to evaluate function
FQW(-, -) to prove thatw’;’ﬁ(-, -) is a function which
we are looking for.

For every given, fixed: and for everyi € N
there exists such real®i > 0, that for everyl <
B < B and for all(t,z) € T the following in-
equality is satisfied:

wh P (t + h,z) — wh P (t, z)
h

k k
wi(t+ h,z) —wi(t, z) 1
— 14+ ). (19
h <( Z.)77k (19)

Let us take any(t,z) € T. Then for
a certainm ¢ {1,...,k}, (t,x) € PF and
may be anothem’ € {1,...,k} (t + h,z) €
PE,. Since F(-,-) is uniformly continuous on
T, therefore there is3¥ such that for(s,y) e
By (R™1): |F(t—s,2—y) — F(t,2)] < gm
and [F(t+h—s,2—y)— F(t+h,z)| < 3.
Therefore either s (t—s,z—y) € PkU

(s:y)€B g (R™H1)

k k| pk
Py Or(s,y)eBZC(R"H) (t—s,x—y) € PLUP,
and either \

(s:y)€Bgi (R 1)

Pk, UPk, or t+h—s,z—y) €
LT (sy)eBy (Rt ( v)
1

(t+h—s2—y) €

Pk, U Pk, . Assume that the first alternative holds
in both cases. The proofs of the other cases are sim-
ilar.

Let us put:

D = {(s.y) € Bo(R"™") s (t — s,z —y) € Ph }
D=t :={(s,y) € Ba(R"™) :

(t—s,0—y) € Pl }

and
Dy ={(s,y) € Bg(R"):
(t+h—sz—y) EP,EI/},
Dyt ={(s,y) € Bg(R"""):

(t+h—sz—y) GPfllfl}.



We have for0 < G < f(F : BaR"!) =

Dy uDgF~! andDF N D~ = @ and similarly

Bs(R"*1) = D' uDE ! andDy nDY ! = 2.
Having all above we are able to calculate:

WP (t+ b, ) — wh (8, z)

h
B wh(t + h, ) — w(t, )
h
1 k’ﬁ
=4 (w2 (t+h—sz—y)
s (R 1)

—wlg’ﬁ(t — 8, — y)) ps(s,y)dsdy

_ (w’f(t+h,x) —wlf(t,:c)))

<3| J @whta)

by’

_wlf,m(t - 5T y))pﬁ(sa y)dey‘
+ [ (Wit z)

m—1
Dg

e

_wlf,m—l(t — 5T — y))pﬁ(37 y)dey

+ / (w’f’m/(t—i-h—s,x—y)

—wi(t+ h, 2)pg(s, y)dsdy)|

<i| [ weo
5(Rn+1)
—w(t — s,z —y))pp(s,y)dsdy
+ / (w(t+h—sz—7y)
Bg(R”*l)
—w(t + h,x)ps(s,y)dsdy)|

+ / [Ym+1 — Ym| pa(s,y)dsdy
Bg(R+1)

< sup  A{lw(t = s,z —y) —w(t, )

(s4)EBs(R+1)
+w(t+h—s,z—y)
—w(t+h,2)[} + [Yyme1 — Yml
< 2M, V' + 18 + 1,
where M! is Lipschitz constant for(t,z) —

wlttha)-w(t) jn 7. Thus there ig) < 3% < BF,
such thaM! vn + 18 < %Uk and in consequence:

= =

1
< ;nk + Mk, (t,l‘) € Tv

and so the proof is completed.

Similarly we prove the estimation for the deriva-
tive of wi’ (¢, z) — wk(t, z) with respect taz, i.e.
the following

For a given, fixedt and for everyi € N there
exists such3®* > 0, that for every0 < g <
and for all(¢, ) € T the following inequality holds:

9 s o . 1
. - Toe (22

For fixedk and for all(t,z) € T :

.0 0
lim o wy (ta) = 5 wi(t o) (29)

and the convergence is uniform.
To simplify the notation we will define two aux-
iliary functions onl’ x U, 8 > 0:

0
g]f(tvxau) : :%wlf(t,x)f(t,x,u)

+L(t, z, ), (24)
95 (t, ) (25)

_ 9 ks
- awa (t,.’lf)f(t,x,U)

+L(t,x,u). (26)

In order to prove the convergnce mg’ﬁ(t, x)
we need the following convergence lemma
For fixedk and for all(t, z,u) € T x U :

limgy (8,2, 0) = gi(t,0,w)  (27)



and the convergence is uniform.

It is enough to show that for ary> 0 there ex-
ists 3 such that fob < 4 < fand(t,z,u) € T x U
we have:

g5t 2,0) — gh(taw)| <€ (@8)

By the above lemma far € N there is suchph >
0, that for0 < 3 < g% and(t,z,u) € T x U :

k,
’92 ﬁ(t7x7u) - g]f(t,m, U))

0
- 8$wlf(ta$) (t,l‘,U)|

1
< ;leMf, (29)

where M is boundedness of (¢, z,u)| onT x U.
Hence, takings := %, i € N such thattn, M; <
€ we conclude the assertion of the Iemma

Let us introduce some additional symbaofs ¥

0):
pi(t,z) = Eélngl Tt w,u) = gf (t, @, uf(t, 7))
py’(t.2) = mingy”(t,x,u) (30)
ue

= 95" (t,w,us” (¢, @),

where u¥(t, x), kﬁ(t x) are such values of
controls that minimize the respective functiogs
andg’;’ﬁ at point(¢, x).
For fixedk and for all(t,z) € T :
limph (¢, 2) = pi (¢, 2) (31)
and this convergence is uniform
Let us devidel” on two sets = {(¢, )
T p§P(t,) > ph(t.a)} andZ” = {(t,z) €
M(1t ) <p1(t z)}. Itlscleartha ‘uz" T
andz' nZ" = @.
Leté > 0 and5: > 0 be such that accord-

ingly to the above lemma fab < 8 < (: and all
(t,z,u) e T xU:

87t w ) — gitaw)| <& (32)
Take(t,z) € Z' then:

0< [ph7(t2) ~ st )|

k,
k,
gy (b2, 0y (8, 2)) —
k,
92 B(taxaulf(t7$>)

g1 (t, =, uy(t,x)) (33)
-9 (t7x’u1(ta ZE))

957 (8,2, (1,2)) — b (8w, k(1 2)) | < @

IN

IN

If (t,z) € Z" then:

0< [ph72) - vt )|

Pt ) — p P (t,x) =

gtz ul (t,x)) — g8 (8, Wb (¢, 2)(34)
< gh(tw,uyP(t,2)) — gy O (t, 2, ub P (¢, 2))
< gtz ub (t,x)) (35)

—g(t,x u2’ﬂ(t,x)) <€

Thus for all (t,z) € T the assertion of the
lemma holds.

For fixedk and anyi € N there isg** > 0, such
that for eact) < 6 < % and(t,z,u) € T x U
the following inequality is satsfied:

W) - )| < me (30)

Since pkﬁ(t, x) is uniformly convergent to
ph(t,z)with 3 — 0onT x U thus the assertion is
a direct consequence of the definition of the limit.

We are now ready to give the theorem on the
convergence of our approximation.

For a given, fixed: and for anyi € N there ex-
ists 3% > 0, that for every) < 8 < % and for all
(t,x) € T the following inequality holds:

2

We have the following estimation, for all
(t,x) eT:
EP(t, ) - FE(t )|
kﬁ

= |= t
s (t,2) + py (t,2)
Dl @) - Pt )| (38)
0 i

< |gue”(tx) = Dif(tx)
+[p5? . 2) - (2, 2) (39)

1 1 2
< ;7716+77k+;77k: = Eﬂk“"'?ka



where0 < 3 < gk := min(3%?, 3*%). Hence for done in two steps only: first we define the function

all (t,z) € Tandi = 2,3,...and0 < 8 < " the wk(t, z) as an effect of special division of the Bt
functioank’ﬁ(-, -) may be estimated as: (this function is not a smooth function), next we sim-
ply smoothen it (in suitable way) and then it is what

=3, < _%% — = < Ffvﬁ(t,x) we are looking for i.e. am—approximate solution

9 to the Hamilton-Jacobi difference inequality (3).
< Skt < 20,.(40)
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