
Difference approximation of Hamilton Jacobi equation.
Convergence

ANDRZEJ NOWAKOWSKI, IWONA NOWAKOWSKA

Faculty of Mathematics, Universiti of Lodz
Banacha 22, 90-232 Łódź
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Abstract: The aim of the paper is to describe numerical approximation of the difference Hamilton-Jacobi
inequality−2ε ≤ Sε(t+h)−Sε(t,x)

h + H(t, x,−Sεx(t, x)) ≤ ε, and to prove its convergence. We find, by nu-
merical construction, a functionSε(t, x) which satisfies the above inequality. The method applied in the paper
bases on the constructions described in [1] for Bolza problem and significently extended in [3].
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1 Introduction

Let S(t, x) be aC1(T ), T ⊂ R1+n, function satis-
fying Hamilton-Jacobi equation

St(t, x) + H(t, x,−Sx(t, x)) = 0, (1)

(t, x) ∈ T = [0, b]×A, S(b, x) = l(x),

whereA is a compact set inRn with nonempty inte-
rior andl(x) is aC1function inA. That equation is
fundamental in mechanics and becomes very useful
in system theory. IfS(t, x) is treated as a value func-
tion of some optimal control or variational problem
then its approximateSε(t, x) must satisfy approxi-
mate Hamilton-Jacobi inequality (the verification in-
equality of the dynamic programming) see e.g. [2]
or [1] i.e.

−ε ≤ Sεt(t, x) + H(t, x,−Sεx(t, x)) ≤ 0, (2)

(t, x) ∈ T , and the boundary conditionl(x) ≤
S(b, x) ≤ l(x) + ε(b − a), (b, x) ∈ T . We can

approximate the derivativeSεt(t, x) by its differ-
ence Sε(t+h,x)−Sε(t,x)

h , let us assume, uniformly in
T. Then we should still have the verification inequal-
ity of the dynamic programming

−2ε ≤ Sε(t + h)− Sε(t, x)
h

(3)

+H(t, x,−Sεx(t, x)) ≤ ε,

(t, x), (t + h, x) ∈ T .

In this paper we confine ourselves to the case when
Hamiltonian is of the form:

H(t, x, w(t, x))

= min
u∈U

{
∂w

∂x
(t, x)f(t, x, u) + L(t, x, u)

}

where (t, x, u) → f(t, x, u) and (t, x, u) →
L(t, x, u) are Lipschitz continuous functions de-
fined in T × U with values inRn andR, respec-
tively, U ⊂ Rm is compact. That means that
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Sε(t, x) from (2) is now anε−value function for
suitable control problem with LagrangianL and ve-
locity f of the statex(t).

The aim of the paper is to describe numerical
approximation of the difference Hamilton-Jacobi in-
equality (3) and to prove its convergence i.e. we
want to find by numerical construction a function
Sε(t, x) in T which satisfies (3). The method ap-
plied in this paper bases on the constructions de-
scribed in [1] for Bolza problem and significently
extended in [3]. Here we make some further exten-
sions and simplification of both papers according to
the problem considered in this paper.

2 Construction of the approximation

We begin the construction of theε−value function
which should satisfy (3) by choosing some arbi-
trary function(t, x) → w(t, x) of classC2(T ), that
satisfies the boundary condition:w(b, x) = l(x),
(b, x) ∈ T .

We define onT a function(t, x) → F (t, x) that
corresponds to the right-hand side of the Hamilton-
Jacobi difference equation:

F (t, x) :=
w(t + h, x)− w(t, x)

h
(4)

+min
u∈U

{
∂w

∂x
(t, x)f(t, x, u) + L(t, x, u)

}
.

The function(t, x) → F (t, x) is a Lipschitz
function onT , asU is compact and the functions
in bracket{} are Lipschitz continuous. SinceT is
a compact set, the functionF (·, ·) is bounded inT
from below and above byκd andκg, respectively:

κd ≤ F (t, x) ≤ κg for all (t, x) ∈ T. (5)

Generally, functionF (·, ·) has values inT of differ-
ent signs, therefore it does not satisfy the verification
inequality of the dynamic programming (3), which
requires thatF (·, ·) has non-positive values greater
than−2ε and less thanε on wholeT . In order to
find a function that satisfies the verification inequal-
ity of the dynamic programming we definea family
of functions(t, x) → F k

1 (t, x), k ∈ N , in T. These
functions will satisfy for allk > kε the inequality
given in (3), wherekε ∈ N is a number that depends
on chosenε, such thatkε →∞ for ε → 0. The func-
tionF k

1 (·, ·) for everyk is described by the following
formula and the construction of(t, x) → wk

1(t, x),

k ∈ N is described below:

F k
1 (t, x) :=

wk
1(t + h, x)− wk

1(t, x)
h

+min
u∈U

{
∂wk

1

∂x
(t, x)f(t, x, u) + L(t, x, u)

}

for every(t, x) ∈ T. (6)

We begin the construction ofwk
1(·, ·) from defining

its domain. Let us divide the interval[κd, κg] ⊂
R, being the image of the setT in the mapping
(t, x) → F (t, x), creatingk subinterval[yi, yi+1] ,
i ∈ {1, . . . , k}, such that:κd = y1 < y2 < . . . <
yk+1 = κg, and that for alli ∈ {1, . . . , k} we
have|yi+1 − yi| = 1

k |κg − κd|. Obviously it is the
equipartition of the interval[κd, κg]. Let us intro-
duce the following symbol:ηk := 1

k |κg − κd| .
Now we divide setT into following subsetsP k

j ,
j ∈ {1, . . . , k}:

P k
1 : = {(t, x) ∈ T : y1 ≤ F (t, x) ≤ y2} (7)

P k
j : = {(t, x) ∈ T : yj < F (t, x) ≤ yj+1} ,(8)

j ∈ {2, . . . , k}, (9)

The setsP k
j , j ∈ {1, . . . , k} constitute a cov-

ering of the setT , i.e. for everyi, j ∈ {1, . . . , k},
i 6= j, P k

i ∩ P k
j = ∅, and

⋃k
j=1 P k

j = T .
Now define auxiliary functions(t, x) →

wk
1,j(t, x) and(t, x) → F1,j(t, x) on setsP k

j , j ∈
{1, . . . , k} as follows:

wk
1,j(t, x) := w(t, x) + yj+1(b− t), (t, x) ∈ P k

j ,
(10)

F k
1,j(t, x) :=

wk
1,j(t + h, x)− wk

1,j(t, x)
h

+min
u∈U

{
∂wk

1,j

∂x
(t, x)f(t, x, u) + L(t, x, u)

}
,

(t, x) ∈ P k
j . (11)

By simple calculation we obtain that:

F k
1,j(t, x) = F (t, x)− yj+1, (t, x) ∈ P k

j , (12)

which means that the following inequality holds:

−ηk ≤ F k
1,j(t, x) ≤ 0, (t, x) ∈ P k

j , j ∈ {1, . . . , k}.
(13)
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It is easily to notice that for some fixedε > 0 we
can always choose suchkε, that for everym > kε

we haveε ≤ Fm
1,j(t, x) ≤ 0.

We define the functionwk
1(·, ·) (for fixed k) in

T =
⋃k

j=1 P k
j as follows:

wk
1(t, x) : = wk

1,j(t, x) (14)

for (t, x) ∈ P k
j , j ∈ {1, . . . , k}. (15)

Obviously for everyk > kε the functionwk
1(·, ·)

satisfies the inequality of the verification theorem of
the dynamic programming for fixedε > 0, and sat-
isfies the boundary condition of this theorem, yet
it is not a function of classC1(T ) (probably it is
even a non-continuous function), and thus it is not
an ε−value function. In order to satisfy the as-
sumptions of the verification theorem we have to
smoothen the functionwk

1(·, ·) by convoluting it
with a function of classC∞(Rn+1) having compact
support.

From now on we assume thatk (the number of
setsP k

j ) is a fixed natural number,j ∈ {1, . . . , k},
andβ > 0 is some real number.

The function ρβ : R × Rn → R of class
C∞(Rn+1) having compact support, whereβ ∈ R+

is defined as follows:
Let ρ1 : R × Rn → R be a function of

classC∞(Rn+1) having compact support, such that∫
Rn+1 ρ1(t, x)dtdx = 1 andsuppρ1 ⊂ B1(Rn+1),

wheresuppdenotes the support, andBτ (Rn+1) for
anyτ ∈ R is a ball inRn+1 with center in0 having
radiusτ . Obviouslyρβ(t, x) := 1

βn+1 ρ1( t
β , x

β ). It
is easy to see that such functionρβ(·, ·) is infinitely
smooth function having compact support andsupp
ρβ ⊂ Bβ(Rn+1) and

∫
Bβ(Rn+1) ρβ(t, x)dtdx =∫

Rn+1 ρβ(t, x)dtdx = 1.
Let now define for eachβ ∈ R+ a new function

(t, x) → wk,β
2 (t, x):

wk,β
2 (t, x) := (wk

1 ∗ ρβ)(t, x) (16)

where the "∗" denotes convolution.
By known theorem we have for everyk and

β the functionwk,β
2 (·, ·) is of classC∞(T ), what

means that the corresponding function(t, x) →
F k,β

2 (t, x), having following definition:

F k,β
2 (t, x) :=

wk,β
2 (t + h, x)− wk,β

2 (t, x)
h

(17)

+min
u∈U

{
∂wk,β

2

∂x
(t, x)f(t, x, u) + L(t, x, u)

}

is Lipschitz continuous inT .

3 The proof of the convergence

In this section we will try to evaluate function
F k,β

2 (·, ·) to prove thatwk,β
2 (·, ·) is a function which

we are looking for.
For every given, fixedk and for everyi ∈ N

there exists such real̂βk,i > 0, that for every0 <
β ≤ β̂k,i and for all (t, x) ∈ T the following in-
equality is satisfied:

∣∣∣∣∣
wk,β

2 (t + h, x)− wk,β
2 (t, x)

h

− wk
1(t + h, x)− wk

1(t, x)
h

∣∣∣∣ < (1 +
1
i
)ηk. (19)

Let us take any(t, x) ∈ T . Then for
a certain m ∈ {1, . . . , k}, (t, x) ∈ P k

m and
may be anotherm′ ∈ {1, . . . , k} (t + h, x) ∈
P k

m′ . Since F (·, ·) is uniformly continuous on
T , therefore there iŝβk

1 such that for(s, y) ∈
Bβ̂k

1
(Rn+1): |F (t− s, x− y)− F (t, x)| < 1

2ηk

and |F (t + h− s, x− y)− F (t + h, x)| < 1
2ηk.

Therefore either ∀
(s,y)∈B

β̂k
1
(Rn+1)

(t−s, x−y) ∈ P k
m∪

P k
m−1 or ∀

(s,y)∈B
β̂k
1
(Rn+1)

(t−s, x−y) ∈ P k
m∪P k

m+1

and either ∀
(s,y)∈B

β̂k
1
(Rn+1)

(t + h − s, x − y) ∈

P k
m′ ∪P k

m′−1 or ∀
(s,y)∈B

β̂k
1
(Rn+1)

(t +h− s, x− y) ∈

P k
m′ ∪P k

m′+1. Assume that the first alternative holds
in both cases. The proofs of the other cases are sim-
ilar.

Let us put:

Dm
β :=

{
(s, y) ∈ Bβ(Rn+1) : (t− s, x− y) ∈ P k

m

}
,

Dm−1
β :=

{
(s, y) ∈ Bβ(Rn+1) :

(t− s, x− y) ∈ P k
m−1

}

and

Dm′
β : =

{
(s, y) ∈ Bβ(Rn+1) :

(t + h− s, x− y) ∈ P k
m′

}
,

Dm′−1
β : =

{
(s, y) ∈ Bβ(Rn+1) :

(t + h− s, x− y) ∈ P k
m′−1

}
.
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We have for 0 < β < β̂k
1 : Bβ(Rn+1) =

Dm
β ∪ Dm−1

β andDm
β ∩ Dm−1

β = ∅ and similarly

Bβ(Rn+1) = Dm′
β ∪Dm′−1

β andDm′
β ∩Dm′−1

β = ∅.

Having all above we are able to calculate:

∣∣∣∣∣
wk,β

2 (t + h, x)− wk,β
2 (t, x)

h

− wk
1(t + h, x)− wk

1(t, x)
h

∣∣∣∣ (20)

=
1
h

∣∣∣∣∣∣∣

∫

Bβ(Rn+1)

(
wk,β

2 (t + h− s, x− y)

−wk,β
2 (t− s, x− y)

)
ρβ(s, y)dsdy

−
(
wk

1(t + h, x)− wk
1(t, x)

)∣∣∣

≤ 1
h

∣∣∣∣∣∣
∫

Dm
β

(wk
1(t, x)

−wk
1,m(t− s, x− y))ρβ(s, y)dsdy

∣∣
+

∫
Dm−1

β

(wk
1(t, x)

−wk
1,m−1(t− s, x− y))ρβ(s, y)dsdy

+
∫

Dm′
β

(
wk

1,m′(t + h− s, x− y)

−wk
1(t + h, x)ρβ(s, y)dsdy

)

+

∫
Dm′−1

β

(
wk

1,m′−1(t + h− s, x− y)

−wk
1(t + h, x)ρβ(s, y)dsdy

)∣∣

≤ 1
h

∣∣∣∣∣∣∣

∫

Bβ(Rn+1)

(w(t, x)

−w(t− s, x− y))ρβ(s, y)dsdy

+
∫

Bβ(Rn+1)

(w(t + h− s, x− y)

−w(t + h, x)ρβ(s, y)dsdy)|

+
∫

Bβ(Rn+1)

|ym+1 − ym| ρβ(s, y)dsdy

≤ 1
h

sup
(s,y)∈Bβ(Rn+1)

{|w(t− s, x− y)− w(t, x)

+w(t + h− s, x− y)
−w(t + h, x)|}+ |ym+1 − ym|

≤ 2M t
w

√
n + 1β + ηk,

where M t
w is Lipschitz constant for(t, x) →

w(t+h,x)−w(t,x)
h in T . Thus there is0 < β̂k,i ≤ β̂k

1 ,
such that2M t

w

√
n + 1β < 1

i ηk and in consequence:

∣∣∣∣∣
wk,β

2 (t + h, x)− wk,β
2 (t, x)

h

−wk
1(t + h, x)− wk

1(t, x)
h

∣∣∣∣ (21)

<
1
i
ηk + ηk, (t, x) ∈ T,

and so the proof is completed.
Similarly we prove the estimation for the deriva-

tive of wk,β
2 (t, x) − wk

1(t, x) with respect tox, i.e.
the following

For a given, fixedk and for everyi ∈ N there
exists sucȟβk,i > 0, that for every0 < β ≤ β̌k,i

and for all(t, x) ∈ T the following inequality holds:
∣∣∣∣

∂

∂x
wk,β

2 (t, x)− ∂

∂x
wk

1(t, x)
∣∣∣∣ <

1
i
ηk. (22)

For fixedk and for all(t, x) ∈ T :

lim
β→0

∂

∂x
wk,β

2 (t, x) =
∂

∂x
wk

1(t, x) (23)

and the convergence is uniform.
To simplify the notation we will define two aux-

iliary functions onT × U, β > 0:

gk
1 (t, x, u) : =

∂

∂x
wk

1(t, x)f(t, x, u)

+L(t, x, u), (24)

gk,β
2 (t, x, u) (25)

: =
∂

∂x
wk,β

2 (t, x)f(t, x, u)

+L(t, x, u). (26)

In order to prove the convergnce ofwk,β
2 (t, x)

we need the following convergence lemma
For fixedk and for all(t, x, u) ∈ T × U :

lim
β→0

gk,β
2 (t, x, u) = gk

1 (t, x, u) (27)
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and the convergence is uniform.
It is enough to show that for anyε > 0 there ex-

istsβ̃ such that for0 < β ≤ β̃ and(t, x, u) ∈ T ×U
we have:

∣∣∣gk,β
2 (t, x, u)− gk

1 (t, x, u)
∣∣∣ < ε (28)

By the above lemma fori ∈ N there is sucȟβk,i >
0, that for0 < β ≤ β̌k,i and(t, x, u) ∈ T × U :

∣∣∣gk,β
2 (t, x, u)− gk

1 (t, x, u)
∣∣∣

=
∣∣∣∣

∂

∂x
wk,β

2 (t, x)− ∂

∂x
wk

1(t, x)
∣∣∣∣ |f(t, x, u)|

<
1
i
ηkMf , (29)

whereMf is boundedness of|f(t, x, u)| on T × U .
Hence, taking̃β := β̌k,i, i ∈ N such that1i ηkMf ≤
ε we conclude the assertion of the lemma.

Let us introduce some additional symbols (β >
0):

pk
1(t, x) = min

u∈U
gk
1 (t, x, u) = gk

1 (t, x, uk
1(t, x))

pk,β
2 (t, x) = min

u∈U
gk,β
2 (t, x, u) (30)

= gk,β
2 (t, x, uk,β

2 (t, x)),

where uk
1(t, x), uk,β

2 (t, x) are such values of
controls that minimize the respective functionsgk

1

andgk,β
2 at point(t, x).

For fixedk and for all(t, x) ∈ T :

lim
β→0

pk,β
2 (t, x) = pk

1(t, x) (31)

and this convergence is uniform.
Let us devideT on two sets:Z

′
:= {(t, x) ∈

T : pk,β
2 (t, x) ≥ pk

1(t, x)} andZ
′′

:= {(t, x) ∈ T :
pk,β
2 (t, x) < pk

1(t, x)}. It is clear thatZ
′ ∪ Z

′′
= T

andZ
′ ∩ Z

′′
= ∅.

Let ε̃ > 0 and βε̃ > 0 be such that accord-
ingly to the above lemma for0 < β < βε̃ and all
(t, x, u) ∈ T × U :

∣∣∣gk,β
2 (t, x, u)− gk

1 (t, x, u)
∣∣∣ < ε̃. (32)

Take(t, x) ∈ Z ′ then:

0 ≤
∣∣∣pk,β

2 (t, x)− pk
1(t, x)

∣∣∣

= pk,β
2 (t, x)− pk

1(t, x) =

= gk,β
2 (t, x, uk,β

2 (t, x))− gk
1 (t, x, uk

1(t, x)) (33)

≤ gk,β
2 (t, x, uk

1(t, x))− gk
1 (t, x, uk

1(t, x))

≤
∣∣∣gk,β

2 (t, x, uk
1(t, x))− gk

1 (t, x, uk
1(t, x))

∣∣∣ < ε̃

If (t, x) ∈ Z
′′

then:

0 ≤
∣∣∣pk,β

2 (t, x)− pk
1(t, x)

∣∣∣

= pk
1(t, x)− pk,β

2 (t, x) =

= gk
1 (t, x, uk

1(t, x))− gk,β
2 (t, x, uk,β

2 (t, x))(34)

≤ gk
1 (t, x, uk,β

2 (t, x))− gk,β
2 (t, x, uk,β

2 (t, x))

≤
∣∣∣gk,β

2 (t, x, uk,β
2 (t, x)) (35)

−gk
1 (t, x, uk,β

2 (t, x))
∣∣∣ < ε̃

Thus for all (t, x) ∈ T the assertion of the
lemma holds.

For fixedk and anyi ∈ N there isβ̃k,i > 0, such
that for each0 < β ≤ β̃k,i and(t, x, u) ∈ T × U
the following inequality is satsfied:

∣∣∣pk,β
2 (t, x)− pk

1(t, x)
∣∣∣ <

1
i
ηk. (36)

Since pk,β
2 (t, x) is uniformly convergent to

pk
1(t, x) with β → 0 onT × U thus the assertion is

a direct consequence of the definition of the limit.
We are now ready to give the theorem on the

convergence of our approximation.
For a given, fixedk and for anyi ∈ N there ex-

istsβ̄k,i > 0, that for every0 < β ≤ β̄k,i and for all
(t, x) ∈ T the following inequality holds:

∣∣∣F k,β
2 (t, x)− F k

1 (t, x)
∣∣∣ <

2
i
ηk + ηk. (37)

We have the following estimation, for all
(t, x) ∈ T :

∣∣∣F k,β
2 (t, x)− F k

1 (t, x)
∣∣∣

=
∣∣∣∣
∂

∂t
wk,β

2 (t, x) + pk,β
2 (t, x)

−Dt,k
w (t, x)− pk

1(t, x)
∣∣∣ (38)

≤
∣∣∣∣
∂

∂t
wk,β

2 (t, x)−Dt,k
w (t, x)

∣∣∣∣
+

∣∣∣pk,β
2 (t, x)− pk

1(t, x)
∣∣∣ (39)

<
1
i
ηk + ηk +

1
i
ηk =

2
i
ηk + ηk,
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where0 < β ≤ β̄k,i := min(β̂k,i, β̃k,i). Hence for
all (t, x) ∈ T andi = 2, 3, ... and0 < β < β̄k,i the
functionF k,β

2 (·, ·) may be estimated as:

−3ηk ≤ −2
i
ηk − ηk − ηk ≤ F k,β

2 (t, x)

≤ 2
i
ηk + ηk ≤ 2ηk.(40)

The functionwk,β
2 (·, ·), is of C1(T ), therefore

if our division of [κd, κg], is such thatηk =
1
k |κg − κd| is less thanε/2 then wk,β

2 (·, ·) is our
ε−value function inT, according to the verification
inequality of the dynamic programming .

4 Conclusion

The paper gives the construction of an approximate
solution to the Hamilton-Jacobi difference equation
(3). What is here the most interesting that it is

done in two steps only: first we define the function
wk

1(t, x) as an effect of special division of the setT
(this function is not a smooth function), next we sim-
ply smoothen it (in suitable way) and then it is what
we are looking for i.e. anε−approximate solution
to the Hamilton-Jacobi difference inequality (3).
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