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Abstract: Transmission network expansion planning is of great importance in power system development, especially in competitive context, transmission expansion could be taken as a kind of system management tool and is now in deep exploration. The development of the transmission network expansion planning is both with the model that represent the planning problem and the algorithm to solve the model. Although being proved effective way to deal with the optimization problem, meta-heuristic algorithms is still puzzled by immature convergence and inefficiency. A hybrid algorithm with brand new concept and implementation is tried to form in this paper. PSO (Particle Swarm Optimization) is used as raw processing according to its high sensitivity in excellent particle to find the local optimum while the Entropy distances are proposed as tabu distance for local optimum representation and the dynamically updated local stochastic search with normal distribution is responsible for finding the global optimum. Samples demonstrate its effective of the algorithm proposed. 

Key words: Transmission network expansion, Particle Swarm Optimization, Hybrid algorithm, optimum 

1 Introduction

Transmission network expansion is of great importance for connecting the plants and the loads, especially nowadays that in the competitive market, the transmission networks are used to provide access to all participants for supply and delivery of electric power; a more robust transmission system would be efficient economic playing field; bad network expansion accommodates the producers with condition for market power exercises.

Many researches have been done in transmission expansion, especially now in a new competitive contexts, it is also concerned as a kind of measurement for system management; the change of paradigm causes the variation in transmission expansion models. Basically, the models could be categorized into two types: One is the traditional heuristic (sensitivity analysis) method that is to rank all the potential lines with some particular index; the lines with higher merit in the index list would have higher priority to be selected. E.g. stepwise expansion and stepwise backward models [1-2] in traditional context, which rank each candidate line with respect to the cost impact under the assurance of certain level of reliability, while in the competitive context, the lines can be ranked by the indexes of congestion extent [3-4].  The models in this category are simply for application, but the final solution may not be real optimum, since it is not from strictly objective optimization. The benefits for the scheme are not quantified; in other words they are more like empirical methods.

The other type of the models tries to formulate the benefit (cost) of the expansion scheme as the objective for maximization (minimization). E.g. in traditional context, the objective could be the construction cost for expansion and operational cost [5] while in competitive market the social surplus (cost for removing congestion) are usually adopted as the objective for maximization (minimization)[6]. Network constraints and power balance are usually taken as inequality and equality constraints respectively. Therefore the models are more strictly defined and have much clearer meaning to account for the optimum transmission expansion. Usually, a multidimensional complex integer nonlinear optimization problem is still hard to be solved perfectly. Many mathematical methods have been tried for solving this problem. The strictly defined mathematical method, (i.e. Linear Programming) LP, Nonlinear Programming NLP, branch and bound method ) are sometimes with some simplifications, which would surely influence the final results and the efficiencies are various with regard to specific problems, moreover, in some cases they cannot get meaningful solutions. Robust algorithms for solving optimization problem are necessary and meta-heuristic algorithms are extensively explored in recent years, e.g. GA[7] (genetic algorithm), EA[8] (evolutionary algorithm), IA[9] (Immune algorithm ), ACA[10](Ant colony algorithm ), PSO[11,12] (Particle swarm optimization), which are drawn from the biology field that are used to imitate the behavior of the living beings. The algorithms are proved to be effective and easy to be applied for the strictly defined integer nonlinear transmission network expansion optimization problem mentioned above. Detailed information of the specific problems is not necessary, and at least ‘not bad’ (sub-optimum) feasible solutions are always to be obtained. Although the algorithms are almost universal, there still exist deficiencies 

· Immature convergence. Since the algorithms are usually based on positive feedback mechanism, namely the excellent individual would be strengthened and tends to be the dominant during the search process, which would be account for being trapped in the locally optimum. 

· To avoid the previous deficiency, there are mechanisms for avoiding the immature convergence. E.g. increase the aberration rate in GA or EA, which would possibly result in blind search and low efficiency. 
Therefore, there seems to be a contradiction between the measurements for improving the algorithms’ efficiency. In this sense, the strategies to improve the algorithm performance are to compromise the contradictions. 

PSO is a newly developed meta-heuristic method. While it is also puzzled by the contradiction mentioned before. The global optimum component in the velocity tends to be strongly enforced and result in being trapped in local optimum. There are lots of the improvement measurements according to the parameters setting for PSO. In this paper, we propose entropy distance to formulate the relationship among the solutions, with which we can define a tabu distance among the initial solutions to make the reasonable solution distribution for global optimum, since the initial samples selection would hugely influence the performance of the algorithm, randomly selection are not enough to ensure a good start point, thus a raw-processing for the initial solutions is proposed. While entropy distances could also be utilized for defining the neighborhood of the individual, and normal distribution based stochastic search is adopted for thorough search around the excellent agents or the best agent from PSO to perfect the local search. 
This paper is composed by the sections as follows: traditional network expansion problem is modeled as the platform for the algorithm application in section 2. Section 3 proposes basic conceptual ideas on entropy distance formulation and solution coding. Section 4 introduces the PSO algorithm and its modification. While stochastic search with normal distribution to enforce the local search is proposed in section 5. Several samples used to test the algorithm are shown in section 6 and the conclusion is drawn in 7.
2 Mathematical model of the common power network expansion
2.1 Consideration to the network expansion model

The electrical network expansions are usually at last abstracted to mathematical optimization problems, but there are not many differences to solve them if we adopt meta-heuristic methods. The meta-heuristic methods don’t care much about the inner structure of the specific problems but solve problems by the mechanism of positive feedback between inputs and outputs, which avoid the multi-dimension, multi-objective and non-linear puzzles that normal mathematic optimization methods face. Therefore the selection of the electrical network expansion model does not challenge the algorithm’s performance and feasibility discussed in this paper. In fact, the proposed algorithm has been applied to the computation and research on some new models, e.g. blind number model for uncertain information, multi-scenario model and multi-objective model. To simplify the discussion, the performance of the algorithm with a simple electrical network expansion model is concentrated in this paper.

2.2 Single stage static network expansion model
The model of single stage static network expansion with base case constraints can be expressed as following:
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S.t.   xi≤ximax
X is a vector with s-dimension to represent the planning solution, s is the number of candidate branches, xi is the ith element in X which represents how many lines to be added for branch i, ximax is the upper bound of the ith branch, Ci is the expense of adding a single line for ith branch. S is the number of isolated systems if solution X is implemented. When S=1, the adopted X will result in a connected network, or a disconnected one; G is the sum of overload amount; W1 and W2 are penalty factor; overload is checked only when the system is connected.
3. Introduction of some conceptions
3.1 Description for transmission solution encoding
The fitness value reflects the objective and requirement of the network expansion. The fitness function is expressed as following:
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Cmax is a big number set in advance; it might be the expense of all the candidate lines or the upper bound of the construction expense for the decision maker.

The transmission solution should be encoded for the algebraic computation. Compare with binary encoding, the real number encoding is more convenient for much less variables. The dimension is corresponding to the number of the branches. Each element of the solution vector represents the number of candidate lines to be added for the corresponding branch. E.g. for solution Xi, the encoding can be interpreted as Tab.1. 

Tab. 1. Real number coding for the planning solution

	Candidate

Branch
	1
	2
	…
	j
	…
	s-1
	s

	solution Xi
	xi1
	xi2
	…
	xij*
	…
	xi(s-1)
	xis


*xij is the number of adding lines for candidate branch j in solution i. 

After the network expansion problem is transformed into a multi-dimensional, non-linear optimization problem, the solution Xi (input) and the corresponding fitness value (output) obtained by equation (1), (2) can be easily applied to meta-heuristic algorithms by positive feedback mechanism between inputs and outputs.

3.2 Description of the distances among the solutions in the solution space
Usually, norm is used to assess the distance between two vectors, which is defined as:
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But it cannot correctly represent the similarity of the two vectors especially in meta-heuristic algorithm the element of the vector generated in random.

E.g. for the vectors in Fig.1
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Fig.1 Vector example for distance representation

DLM>DLN  but it is not in accordance with the theoretical analysis, that vector N is three times difficult to become L than that of vector M.

Entropy represents the chaos or disorder in the system. Here it is technically introduced to describe the distances among the solutions (vector). For example, the distance between solution v and w is:
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s here is the dimension of the solution vector; pi is defined for describing the similarity of the two solutions:
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Hvw=0 if the two solutions are identical, while the distance is the maximum Hvw=(s/2)lg2  in case that the two vectors are completely different. The entropy distance between L and M, L and N respectively are:

HLM = lg2/2=0.1505 and HLN  =3lg2/2=0.4515

Hence the entropy-expressed distance can correctly represent the distance between the two vectors.

4  PSO and the improvement on initial particle definition
PSO is a new algorithm that learned from the study on behavior of bird flocks. Each member in the flock would adjust its position with respect to the best position it ever met and the best position the whole flock ever met. Each individual in the swarm called as ‘particle’, represents a potential solution or a transmission scheme in this paper. Each particle can be updated with velocity, which is composed by three parts: the velocity of previous iteration, the best position of the particle encountered and the best position for all the particles, which can be formulated by 
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Vid is the velocity of the particle and xid is the position of the current particle i. pid and pgd are respectively the best positions that particle i has encountered and the best position for all the particles. rand() are stochastic number ranged in [0,1]. c1 and c2 are empirically chosen constant, usually they are 2. Many attempts have been made to improve the performance with respect to the parameters in (6). E.g. the value of ω and χis gradually decreased to ensure the convergence [13], c1, c2 can be dynamically updated, pgd could be the best position only for some particles to avoid the immature convergence. While in this paper, as we studied, the distribution of initial particles hugely influences the performance of the algorithm, based on which we propose the raw processing for initial particles definition. The procedure could be follows,
1. Randomly selected particles are applied to (6)-(7) to get the best pgd only for some steps.

2. Repeat step 1 for some times to get n pgd  as the n initial particles with the entropy distances among them larger than tabu distance Dmax.
Dmax can be defined based on the particle space and the number of the particles, larger dimension corresponds to larger space hence need more particles, and the distribution of the particles should be scattered with a tabu distance, which could be computed easily by (4),(5). 

Actually due to the randomly generated velocity, the local search around the particle is hard to control, too large local space search means blind search,  while too close will result in inefficiency, and more important, we don’t know when to decrease χ or ω. From the raw processing of PSO, we can get some local optimum (extreme points), which contains much information about the global optimum and need to be well studied. The tabu distance we introduced is a way to let the local optimum represent the whole solution space and avoid inefficiency caused by repeat search.
5  Stochastic local search with normal distribution
Local search should be enforced for excellent particles to ensure that the best solution around the neighborhood of the supposed ‘optimum’ from 4 would be found, which aims to avoid the insufficient search. Basic idea is that once the local optimum is obtained, we must be sure that it is the real local optimum, there should not exist any individual around better than it. New local optimum searched will substitute the old one. With the entropy distance proposed in section 3, we can easily define a neighborhood of a specific particle. 

Start from the known local optimum, stochastic local search would be performed. Centered with the local optimum, the next generation solutions are defined as those with their entropy distances from the local optimum subject to normal distribution (Fig.2). Suppose Hiw the distance from ith local optimum to solution w. therefore, 
Hiw~ N(0,σi)
(7)

In whichσi can be determined by the space dimension.

Fig 2. Normal search around the local optimum

Once better solution is obtained, the locally optimum would be updated. Although it is a process of the local search, the dynamically updated optimum ensures the search always in the direction of better solution hence it can be looked as gradual moved search in detail. If the local optimums from PSO are well recognized, namely they are in the local optimum region; the local search with normal distribution would be efficiently to arrive at the real local optimum. 



Fig.3 Local search subject to normal distribution
As shown in Fig.3, A’ is well recognized to represent the local optimum region for the real optimum A, with the stochastic search in a small region around A’, A would be efficiently obtained. While B’ in a flat area, local search in a small region would result in inefficiency, namely long time search in a small region. Moreover, B’ is not enough to represent B, local search around B’ cannot necessary get to B and hence lose it. 
6. Numerical example
6 buses and 18 buses network is illustrated in detail for testing the algorithm, relative data and parameters are reported in the appendix. The line length can be used as expense for optimization. 

If we only apply PSO method with basic parameters set, we are not sure we can get the global optimization; even it is a very simple system. PSO seems very likely to be trapped in pseudo local optimum, which means it hasn’t a strong capability in local search. But each time we apply PSO, we can get a relative not bad solution.
Fig. 4 6-bus Garver system for expansion

The six bus electric system of Fig.4 was first proposed by L.Garver (Garver, 1970) and has been used as classic test case by many authors with respect to the transmission system expansion. (Pereira, 1985), (Romero, 1993), (Oliveira,1995), (Gallego,1996), (Gallego, 1997). The global optimum objective value is 200(Tab.2), and pseudo local optimum 1 has the objective value 260, which 

Tab.2. Result analysis on Garver 6-bus system planning

	Branch
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	Obj.

	Line number constraint
	3
	4
	3
	3
	4
	3
	3
	4
	4
	4
	3
	4
	4
	4
	4
	

	Global optimum
	0
	0
	0
	0
	0
	0
	0
	0
	4
	0
	1
	0
	0
	2
	0
	200

	Pseudo local optimum 1
	0
	0
	0
	0
	0
	0
	0
	0
	4
	0
	1
	0
	0
	4
	0
	260

	Pseudo local optimum 2
	0
	1
	0
	0
	0
	0
	1
	0
	4
	0
	0
	0
	0
	0
	2
	320


has only one element different from the global optimum, hence pseudo local optimum 1 is in the optimum region of global optimum, but with the basic PSO, we take much more generation than the hybrid PSO, which use the enforced local search to get the real local optimum as reported in Tab.3. While for the Pseudo local optimum 2, since it is far from the global optimum:

· PSO is trapped at the pseudo optimum and cannot get to the global optimum. 

· Hybrid PSO takes much more generations (120) to get to the global optimum compare to pseudo local optimum 1 (5), which demonstrate, the local search efficiency must be based on a good performance of the PSO raw processing, or it would result in inefficiency with respect to the global optimum.

Tab.3 Algorithm comparison

	Pseudo local optimum
	Generations toward global optimum

	
	Simple PSO
	Hybrid  PSO

	1
	85
	5

	2
	- *
	120


* Cannot obtain the global optimum.

Fig.5 and Fig.6 are the best solutions of the expansion with respect to the 18-bus system.
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Fig.5 The 1st solution of the sample
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Fig.6 The 2nd  solution of the sample
The original lines in the system are the thicker ones, while the thinner lines are the ones to be added.
The hybrid PSO is applied to the 18-bus system and we can get to convergence with the generations reported in Tab.4, in which the 3rd and 6th pseudo local optimum solved by hybrid PSO is the global optimum.

Tab. 4   Performance comparison between PSO and the hybrid PSO with enforced local search

	Pseudo local optimum
	Generations toward local optimuma

	
	Simple PSO
	Hybrid  PSO

	1
	75
	15

	2
	54b
	120

	3
	85
	20

	4
	150
	55

	5
	77b
	65

	6
	32b
	40


a. Number of generations needed for the corresponding pseudo local optimum to obtain the real local optimum.

b. for  the pseudo local optimum 2,5,6, with simple PSO they can not get the same good local optimum than that from hybrid PSO.
From the result we got, hybrid PSO with enforced local search has much better performance than that of the simple PSO. Hence the numerical examples demonstrate the efficiency of the algorithm proposed.

7 Conclusions
Traditional improvement for PSO algorithm is usually focused on careful selection of parameters, which need empirical testing; hence the parameters are hard to be defined with specific transmission expansion planning problem. The algorithm proposed in this paper tries to solve the immature convergence of PSO with brand new idea.

· PSO is used to generate the pseudo local optimums and the concept of entropy distance is applied for describing the distance among the solutions. With the distance controlled the pseudo local optimums could be reasonably distributed. 

· Around the pseudo-local optimums, stochastic local search is responsible for obtaining the real local optimum. The dynamic updating of the pseudo-local optimums ensures the local search head to the real ones. The process of optimization is efficient if the pseudo-local optimums are well recognized by PSO, otherwise the local search would be slow since the stochastic search concentrates in a small region. 
· The algorithm integrates the excellent large-scale search capability of PSO and good local search performance of stochastic search with normal distribution. Particularly designed mechanism makes the algorithm also suitable for multi-peak problem, since at last we can get confirmed local optimums.
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Appendix:
A. Data of the sample 18 bus network:

Tab. A-1 Power supply and load of each node

	Node
	Supply
	Load
	Node
	Supply
	Load

	1
	0
	55
	10
	750
	94

	2
	360
	84
	11
	540
	700

	3
	0
	154
	12
	0
	190

	4
	0
	33
	13
	0
	110

	5
	760
	639
	14
	540
	32

	6
	0
	199
	15
	0
	200

	7
	0
	213
	16
	495
	132

	8
	0
	88
	17
	0
	400

	9
	0
	259
	18
	142
	0


Tab. A-2 Parameter for each line

	Branch
	Nodes from to
	Reac.

(p.u.)
	Capa.

(MW)
	Existent

lines
	Candidate

lines
	Length

(km)

	1
	1-2
	0.0176
	2300
	1
	0
	70

	2
	1-11
	0.0102
	2300
	0
	1
	40

	3
	2-3
	0.0348
	2300
	1
	0
	138

	4
	3-4
	0.0404
	2300
	1
	0
	155

	5
	3-7
	0.0325
	2300
	1
	0
	129

	6
	4-7
	0.0501
	2300
	0
	1
	200

	7
	4-16
	0.0501
	2300
	0
	3
	200

	8
	5-6
	0.0267
	2300
	1
	0
	106

	9
	5-11
	0.0153
	2300
	0
	2
	60

	10
	5-12
	0.0102
	2300
	0
	1
	40

	11
	6-7
	0.0126
	2300
	1
	0
	50

	12
	6-13
	0.0126
	2300
	0
	1
	60

	13
	6-14
	0.0554
	2300
	0
	2
	220

	14
	7-8
	0.0151
	2300
	1
	1
	60

	15
	7-9
	0.0318
	2300
	0
	1
	126

	16
	7-13
	0.0126
	2300
	0
	2
	60

	17
	7-15
	0.0448
	2300
	0
	2
	178

	18
	8-9
	0.0102
	2300
	1
	1
	70

	19
	9-10
	0.0501
	2300
	1
	2
	200

	20
	9-16
	0.0501
	2300
	0
	2
	200

	21
	10-18
	0.0255
	2300
	0
	1
	100

	22
	11-12
	0.0126
	2300
	0
	2
	50

	23
	11-13
	0.0255
	2300
	0
	1
	100

	24
	12-13
	0.0153
	2300
	0
	1
	60

	25
	14-15
	0.0428
	2300
	0
	2
	170

	26
	16-17
	0.0153
	2300
	0
	2
	60

	27
	17-18
	0.0140
	2300
	0
	2
	55
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