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ABSTRACT：The Electric load series always presents complex phenomenon because of the influence of many complicated facts, various forecasting results can be obtained by using different models for a given electric power utility. The combined forecasting model is recognized as an appreciative method. The paper introduces an improved Particle swarm optimization (PSO) for electric load combination forecasting model weight optimization. The new method applies a self-adaptive weight scale operator to avoid being trapped in the local optimum in conventional Particle swarm optimization. The proposed method has been examined and tested on a practical system. The test results show that the improved PSO has better convergence and faster calculation speed than the basic PSO, and the presented combination forecast model has improved the accuracy.
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1. Introduction

The forecasting of electric load has always been important for the secure and economically beneficial operation of a power system. The short-term load forecasting has attracted many scholars’ interests in the modeling theory of forecasting for a long time. Some effective achievements have been harvested [1]-[5]. But The electric load series always presents complex phenomenon because of the influence of many complicated facts, various forecasting results can be obtained by using different models for a given electric power utility. Some specialists think that individual models work well in some certain electricity grids or areas over a certain period of time, but are not suitable under other conditions. The reason is that a basic forecasting model is only a certain kind of mathematical algorithm that tries to imitate load change rules but does not work very well in every possible condition [6]. Some optimal technologies have been used to solve the combination forecasting model weight optimization problem, including the algorithm based on Least-square technique, genetic algorithms-GAs, evolutionary programming-EP and etc [7]-[9]. Particularly, with its sound exploration ability both global and local, a new evolution technology, named particle swarm optimization, has become the new focus of research [10]-[13]. The achievements encourage people to make further research in this field. The paper introduces an improved Particle swarm optimization for electric load combination forecasting model weight optimization. The new method applies a self-adaptive weight scale operator to avoid being trapped in the local optimum in conventional Particle swarm optimization. The proposed method has been examined and tested on a practical system. The test results show that the improved PSO has better convergence and faster calculation speed than the basic PSO, and the presented combination forecast model has improved the accuracy.
2. A Combined Forecasting Model For Electric Load Forecasting
A wide variety of methods for short-term load forecasting have been reported in the literature. These methods can be categorized mainly into two groups: statistical approaches and intelligent approaches. Statistical methods yield good results for weekdays, but they fail to give satisfactory results for weekends due to the inflexibility of adaptation on "learning from experience". Intelligent systems, in contrast, can generate accurate load forecasts for weekends with unusual load patterns, incorporating incompleteness and inconsistency in the data. The combined forecasting model can improve the accuracy by combining Statistical method with intelligent approach. The combined forecasting model can be described as follows:
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 are the predicted load values of  ith day using jth model.
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 are forecast error of ith day using jth model.
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 is weight factor of jth model.

The paper uses three individual forecasting models in a real test system.  

(1) ARMA model.

(2) Regression model (RM).

(3) Artificial neural networks model (ANN).
3. An Improved Particle Swarm Algorithm
Particle swarm optimization (PSO) was first introduced by Kennedy and Eberhart in 1995 [14].  The method was discovered through simulation of a simplified social model. Later on, it was developed as a general heuristic exploration technique, which performs effective exploration through memory and feedback.  With the imitation of the behavior of bio-community, it enjoys a rapid calculation and a sound global exploration when applied in a large-scale optimization. Like evolutionary algorithms, PSO technique conducts search using a population of particles, corresponding to individuals. Each particle represents a candidate solution to the problem at hand. During the calculation, the particle is affected by three factors when it is moving in space.  One of the factors is the particle’s current velocity 
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where the particle has reached before.  The third factor is the optimal point 
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 of the community or the sub-community.  The particle’s velocity is changed towards 
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 are assigned separately a weight at random.  The velocity and position is updated according to the formula (2) and (3).


[image: image14.wmf]))

1

(

)

1

(

(

))

1

(

)

1

(

(

)

1

(

)

(

,

2

2

,

1

1

,

,

-

-

-

´

´

+

-

-

-

´

´

+

-

´

=

t

x

t

gbest

r

c

t

x

t

pbest

r

c

t

v

w

t

v

j

i

j

i

i

j

i

j

i

                      (2)


[image: image15.wmf])

(

)

1

(

)

(

,

,

,

t

v

t

x

t

x

j

i

j

i

j

i

+

-

=

                                       (3)

(
[image: image16.wmf]m

j

n

i

L

L

,

2

,

1

,

2

,

1

=

=

)

Where, 


[image: image17.wmf]2

1

,

c

c

are the learning factors, generally, 
[image: image18.wmf]2

2

1

=

=

c

c

. 

w  is the weight scale operator.
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 are the randoms within the interval of [0,1]. 
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 is the number of iteration.

n is the number of particles.

m is the number of dimensions.

Some scholars studied the nonlinear programming problem adopting the particle swarm optimization (PSO). Generally, they believe that parameter w is the key factor to affect the convergence of PSO [15]. In fact, the larger scale contributes to the searching for the global optimal solution in an expansive area, but its precision is not that sound because of the rough search. The smaller scale improves the precision of the optimal solution, but the algorithm may be trapped in the local optimization. Therefore, this paper provides self-adaptive weight scale, large enough to assist the algorithm to search for the optimal in a wide space at the very beginning of iteration.  While the generations of evolution increase, the weight scale will be shortened by itself to increase the precision of the optimal solution. The formulation of the self-adaptive weight scale can be expressed as follow.
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Where,

t  is the current number of evolution generations.
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 is the total number of evolution generations. 
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The procedure of the self-adaptive PSO for combined forecasting model weight optimization can be described as follows.

Step1 Initialization: Set t=0. Let 
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[image: image26.wmf]{

}

n

i

X

i

L

,

1

),

0

(

=

 (set n to 20 in this paper). All particles are set between the lower and upper limits. Similarly, generate randomly initial velocities of all particles,
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 is generated by randomly selecting a value with uniform probability over the kth dimension
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Each particle in the initial population is evaluated using the equation (1).
For each particle, set
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Step2 Velocity and Position updating: Let t=t+1. Using the global best and individual best of each particle, the ith particle velocity and position in the jth dimension is updated using the equation (5)-(7).
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Where:  
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Step3 Individual and global best updating: Each particle is evaluated according to its updated position.

If 
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Else go to Step3
Search for the minimum value 
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Else go to Step3.

Step4 Stopping criteria: If one of the stopping criteria is satisfied then stop. Else go to Step2
4. Numerical examples
The algorithm described above has been implemented in shanghai grid of East China area to forecast the 96 load data value of the day, 15.04.2003. Using the forecasting erros induced by the ARMA, RM, ANN to optimize the weight factors of the CM. Fig 1 is to show the forecasting error curve of the above four approaches. Tab.1 gives the results under optimal weight factors based on the CPSO and New PSO approach.
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Fig 1. Error curves of four models

Tab1.  Forecasting results of various models

	
	ARMA 
	RM
	ANN
	CM

(CPSO)
	CM

(New PSO)

	Mean error
	0.020755
	0.024065
	0.021815
	0.01638
	0.015743

	Maximal error
	0.062328
	0.052580
	0.052496
	0.048091
	0.042328


Each algorithm is iterated 30 times in order to compare the CPSO with New PSO in terms of the convergence character and the computation speed. Tab.2 gives the average values for comparison showing that the New PSO is more efficient than CPSO. 

Tab2. Performance of New PSO and CPSO
	
	Mean iterative
	Mean time (s)

	CPSO
	>42
	2.532

	New PSO
	<10
	1.675


5. Conclusion
The Electric load series always presents complex phenomenon because of the influence of many complicated facts. The combined forecasting model is recognized as an appreciative method. The paper introduces an improved Particle swarm optimization (PSO) for electric load combination forecasting model weight optimization. The proposed approach based on the PSO is efficient in compute the weight factors of the CM and the introduction of the self-adaptive weight operator into the CPSO can largely improve the convergence speed of the PSO.
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		0.033913		-0.02122		-0.02094		-0.00206

		0.028231		-0.03858		-0.03483		-0.01417
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		0.043235		-0.01606		-0.01255		0.005671
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