Hopping Currents for III-V Nanostructures in the Tight Binding Approximation
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Abstract: - Carrier transport and transport mechanisms are the essence of modern microelectronic devices. Illumination of a special class of optical devices generates free carriers in solid-state devices that eventually become collected electric currents. An important transport mechanism in microelectronic devices is hopping conduction form site to site. In this communication, we calculate Nearest Neighbor Hopping (NNH) current densities for III-V heterostructures embedded in the intrinsic layer of p-i-n geometries. We start from a general formalism that relates the density of states in individual wells with the transition probabilities from a quantum well state to any neighboring one, in a superlattice-geometry. In the process, we point out the fact that there is zero hopping-current without Fermi level splitting for any two consecutive layers. Next, and in the tight binding approximation (TBA), we relate the eigen-energies with the transition probabilities and conclude that NNH-currents seem to be of the order of 1mA/cm2, and depend on (a) device geometry (b) temperature (c) conduction band discontinuity and (d) Fermi level splitting. 

Key – Words - Microelectronics, Hopping conduction, superlattices, quantum wells 
1
Introduction

Heterostructures and nanostructures are fundamental components of modern microelectronic components. Every facet of micro-electronic device performance includes carrier generation, accumulation and transition from state to state, anywhere in the interior of the structure. The primary processes of carrier accumulation and conductance, in optical devices, are photogeneration and recombination.  Incident photons (either poly- or monochromatic) may cause carrier generation and subsequent carrier transport, along with recombination losses, anywhere inside the crystal. Given the losses, carrier transport occurs inside the crystal via diffusion or drifting, thus leading to some non-zero currents, as long as there is some internal field gradient to support the electronic motion. There is a special class of optical devices where an overall diode design has been adopted, and where single layers of materials are being replaced by a sequence of layers with alternating energy gaps. Typical thickness of such layers is of the order of 20 to 40 nm, which inevitably leads to quantum size phenomena [1, 2]. The general idea is a p-n junction prolonged to a p-i-n structure, where the intrinsic region is grown as a superlattice: successive growth of two types of layers with different energy gaps (wide and narrow). Such a sequence forms quantum wells, which act as traps of conduction electrons. In other words, electrons (photogenerated) escape thermionically to the conduction band of the wide-gap material (by overcoming the conduction band discontinuity) and due to built-in electrostatic fields, they drift along the growth direction of the layers. During his process, they face a non-zero probability of being trapped in quantum wells, where they occupy discrete energy levels, according to quantum mechanical rules.  Trapped carriers in quantum wells have a finite probability of either recombining or escaping. Escape mechanisms are thermionic emission [3] or hopping to neighboring sites [4]. Hopping currents in such hetero- or nano-structures are of great importance, since the provide insights for the actual behavior of carriers in semiconductors. Hopping carriers may reach the end of a device and be collected as useful current, or may be lost (recombine) in the process. Nanostructures (especially of the III-V type) come in many different types of designs, from superlattices to quantum dot geometries. Prospective applications of reduced dimensionality structures may vary from photovoltaic applications to wavelength detectors, to astronomical applications and to high-speed transistors. Hopping currents in nanostructures are of great importance, since the provide insights for the actual behavior of carriers in semiconductors. Photo-excitation causes generation and recombination of carriers in any optically sensitive semiconductor device. Nanostructures (especially of the III-V type) come in many different types of designs, from superlattices to quantum dot geometries. Prospective applications of reduced dimensionality structures may vary from photovoltaic applications to wavelength detectors for astronomical applications, to high-speed transistors. 

2
Hopping currents

NNH-currents from site k to site k’ may be expressed as a double summation over all available sites and energy values, via (a) appropriate transition rates Skk’ and (b) available density of states g(E), in the Fermi-Dirac (fk,k’ - probability) regime. 
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The quantity in the brackets includes the difference between two adjacent sites, which successively becomes:
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The difference ’ represents the energy-distance between the Fermi levels at the two sites k and k’. As seen from the above result, non-zero hopping currents occur only when the Fermi levels at the NN-sites do not coincide. This difference is due to excess carrier concentration in the quantum wells. Such excess carrier populations form after illumination and absorption of incident photons with energies of the order of the optical gap of the involved semiconducting layers. Excess photocarriers may escape from quantum wells (minus the lost ones due to recombination processes) and contribute to thermionic or hopping conduction. Hopping currents are:
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Converting the primed summation into an integral, over the width Lz, which in essence is a multiple of the superlattice period (= the sum of quantum well (Lw) and barrier (Lb) widths respectively): d=Lw+Lb (along the z-direction) of the intervening potential barrier (wide gap layer):
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The current density becomes, as follows:
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3
Dealing with the kz’ – integral

The transition rate from state k to k’ is:
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Where, the squared term is the matrix element of the interaction between the two sites k, k’. Each of the bands in the k, k’ sites are mini-bands centered on a constant energy level with an explicit bandwidth in the tight binding approximation, namely, E=E|| +cos (kzd), where the “parallel” term indicates the x-y plane, and where kz represents the growth direction. The miniband widths are 2 and the lattice periodic distance d as the sum of quantum well and barrier width respectively. 
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[image: image9.wmf])

|

|

)(|

1

(

)

/

2

(

|

|

)

(

|

|

)

1

(

)

/

2

(

|

|

)

(

|

|

)

1

(

)

/

2

(

)

1

(

2

'

2

'

'

'

2

'

2

'

'

'

2

'

2

'

'

'

'

'

'

z

z

k

k

k

k

k

k

k

z

z

z

z

z

k

k

k

z

z

z

z

z

k

k

k

z

kk

k

z

V

V

f

dk

k

L

k

k

V

f

dk

k

L

k

k

V

f

dk

S

f

dk

-

+

-

ò

=

ú

ú

û

ù

ê

ê

ë

é

+

-

ò

+

ú

ú

û

ù

ê

ê

ë

é

-

-

ò

=

=

-

ò

h

h

h

p

g

d

p

g

d

p














(8)
Where Lz has been replaced by Lb, the barrier width of the neighboring wide gap material, and where the equality between F-D distributions with opposite k’s is valid (via the cosine terms in the TB-Approximation) was used. The matrix elements are:
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And at kz=-kz’:
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The kz’ integral is: 
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Expression (11) is of great importance: it relates the transition probability to a site k’ with the superlattice geometry, in other words, the actual length of the repeat distance d, the conduction band discontinuity, the number N of superlattice repeat periods (where d can be replaced by Nd) and the actual miniband width of the eigenstates in an individual quantum well. 
4
Current density

Hopping current densities in microelectronic devices are existent at any temperature range. Clear dependence on parameters such as temperature, device dimensions, and quantum well properties should be clearly shown. Such modeling, where these currents are derived explicitly, is not available for III-V heterostructures, at least from the point of view of photovoltaic structures. Instead, substantial work has been done on disordered systems, amorphous superlattices and Si/Ge heterostructures [6, 7, and 8]. 

The current density in (6), via (7), (8), (10), (11), becomes: 
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(12)
The value of the integral reaches maximum values via the sine terms in the expression above, and neglecting the Pauli term, the integral term is:
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The total (max) current density result is fundamental, in the sense that it provides a measure of the order of magnitude of expected currents per unit area, for a superlattice structure. 
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The following factors are included in the final version of the max NNH-current:

(a) superlattice geometry: width of quantum wells, and potential barriers
(b) electronic mass, and effective mass of carriers in specific semiconductor layer
(c) conduction band discontinuity: the latter plays a great role in carrier transport, since it represents the barriers that carriers need to overcome
(d) Fermi level splitting at a quantum well-barrier junction. In the vicinity of an interface between two layers (as involved in the formation of a quantum well), the Fermi level splits under illumination. As it can be seen from expression (6) above, net hopping currents are zero, unless Fermi level splitting occurs in the order of 4 to 14meV. 
For repeat distances d of the order of 10 nm, expression (15) provides realistic results for maximum current densities per quantum well near (or less than) 1mA/cm2. 
Note also that the above result includes recombination effects, via separate modeling according to [3], where detailed analysis of recombination losses of excess carriers has been proposed.

For GaAs-AlGaAs superlattice systems, the effective mass is 0.067 the electronic rest mass, the band discontinuity is of the order of 0.13 eV, quantum well and barrier widths are of the same order, and Fermi level splitting. Expression (15) finalizes as follows: 
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5 
Conclusion

Hopping current densities in III-V nanostructures have been derived from first principles, via the tight binding method. More specifically, by means of transition probabilities, hopping current densities were derived and computed for specific GaAs-AlGaAs  systems. We predict current densities of the order of 1mA/cm2 are predicted in such devices, leading to the conclusion that multiplicity in successive layers could lead to improvements of multilayer devices over their bulk counterparts. 
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