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1 Introduction
Robustℓp-stability problems are usually re-stated as sat-
isficing problems involving the computation of a struc-
tured norm; see§3 for a definition of the structured norm
and see [6] for a comprehensive summary of relevant
results and references. However, in general, the exact
computation of the structured norm is a very difficult
task. It is hence customary to substitute the structured
norm by its upper bound approximation as derived from
the scaled small gain theorem. The level of conserva-
tiveness of such upper bound depends on the nature of
the robust stability problem, more precisely, the class of
perturbations considered.

In the particular case when the perturbations are struc-
tured, independent (i.e., not repeated), linear time-varying
(LTV), and inducedℓ∞-norm bounded, it was shown by
Khammash&Pearson, [11], that the abovementioned up-
per bound is indeed equal to the structured norm value
itself. Similar results derived later, see Shamma, [15],
and Young&Dahleh, [16], extend these results to the in-
ducedℓ2-norm bounded problem and to the general in-
ducedℓp-norm bounded problem, respectively.

Since systems with repeated components appear of-
ten in practical applications, see [2], the class of robust
stability problems with repeated perturbations certainly
deserves more attention. Unfortunately, the above re-
sults fail to hold for structured,repeated, LTV, induced
ℓ∞-norm bounded perturbations which motivates the de-
velopments of the present paper where new necessary
and sufficient conditions for the stability of such sys-
tems are derived. The new sufficient stability condi-
tion is derived from the implementation of a particu-

lar type of system augmentation within the scaled small
gain theorem. The result is conceptually simple, yet it
permits a significant decrease in the conservativeness
of design and analysis in many robustness problems as
compared with previous techniques, see [3] and [4]. On
the other hand, the new necessary condition allows to
assess the tightness of the proposed sufficient condition
and to identify ineffective (i.e., non-robust) designs, see
[1].

The derived results are applied to a practical robust
ℓ∞-performance problem involving an electronic circuit
with repeated operational-amplifiers, persistent noise dis-
turbances, and peak-to-peak gain performance objectives.
The numerical and experimental results obtained con-
firm the efficiency of the proposed approach.

The paper is structured as follows. The required no-
tation is introduced in§2. Then, the robustness problem
is stated in§3, followed by the corresponding sufficient
and necessary conditions for stability in§4 and§5, re-
spectively. Finally, the theoretical results are applied to
a realistic example in§6.

2 Notation
Let 0m×n and In denote the zero matrix of dimension
m×n and the identity matrix of dimensionn×n, respec-
tively. For any matrixA ∈ R

m×n, A , [Aij ] i∈{1,...,m}
j∈{1,...,n}

,

whereAij is theijth entry ofA. Similarly, for any vec-
tor a ∈ R

n, a , [a1 . . . an]T , whereai is theith entry
of a. This notation carries to the case of MIMO sys-
tems and vector signals. LetAT andρ(A) denote the
transpose and the spectral radius of the matrixA, re-



spectively. Given a matrixA ∈ R
m×n, define

sgn(A) , [sgn(Aij)] i∈{1,...,m}
j∈{1,...,n}

,

wheresgn(Aij) ,

{
+1 if Aij ≥ 0
−1 if Aij < 0

.

Consider the systemP partitioned as followsP ,
[

P 11 P 12

P 21 P 22

]

. Given the systemQ of dimension com-

patible withP 22, let

Fl(P,Q) , P 11 + P 12Q(I − P 22Q)−1P 21

denote the lower linear fractional transformation between
P andQ. Similarly, given the systemR of dimension
compatible withP 11, let

Fu(P,R) , P 22 + P 21R(I − P 11R)−1P 12

denote the upper linear fractional transformation between
P andR.

Let ℓn
p denote the space of all infinite sequences

{s(k)}∞k=0 of vectors of lenghtn, s(k) ∈ R
n, equipped

with the norm‖s‖p < ∞, where

‖s‖p , p

√
√
√
√

∞∑

k=0

n∑

i=0

|si(k)|p.

For p = ∞, also define‖s‖∞ , sup
k≥0

max
i∈{1,...,n}

|si(k)|.

Given a bounded operatorS : ℓn
p 7→ ℓm

p with s 7→ S(s),
let

‖S‖p−ind , sup
s 6=0

‖S(s)‖p

‖s‖p

be the inducedp-norm of S. Furthermore, ifS is lin-
ear and causal, thenS(s) is determined by the convo-

lution (S ∗ s)(k) ,
k∑

l=0

S(k, l)s(l), whereS(k, l) de-

notes the kernel ofS. In the case whenS is also time-

invariant,S(s) simplifies to(S ∗ s)(k) ,
k∑

l=0

S(l)s(k −

l), where{S(l)}∞l=0 is the impulse response ofS. Then,
it is known that, see [6],‖S‖∞−ind = ‖S‖1, where

‖S‖1 , max
i∈{1,...,m}

n∑

j=1

∞∑

k=0

|Sij(k)|. (1)

3 Problem Statement
Let the set∆ denote a given class of admissible per-

turbations which carries all the important information

Fig. 1: TheM∆-loop.

relevant to the nature and structure of the perturbations.
Assume that∆ ∈ ∆ and thatM is a system of dimen-
sion compatible with∆, as illustrated by Fig.1. The
structured norm ofM is then defined as:

SN∆,p(M) , 1

inf
∆∈∆

{‖∆‖p−ind:(I−M∆)−1 is notℓp-stable} .

If for every ∆ ∈ ∆, (I − M∆)−1 remainsℓp-stable,
then it is assumed thatSN∆,p(M) = 0. Recall that, the
structured norm is not a norm, see [6].

Furthermore, assuming that‖∆‖p−ind < 1, it is
seen that robustℓp-stability of theM∆-loop is equiv-
alent to the condition:SN∆,p(M) ≤ 1. However, in
general, it is not possible to computeSN∆,p(M) ex-
actly due to the complexity of such a task. Practical ap-
proaches hence rely on the derivation of upper and lower
bounds forSN∆,p(M) that can be computed with rela-
tive ease, but at the cost of introducing some conserva-
tivess.

Given an integern ∈ Z
+ together withn integers

pI ∈ Z
+, I ∈ {1, ..., n}, define the following classes of

perturbations:

∆
1×1
LTV , {∆ : ∆ is SISO, causal, and LTV},

∆
rep , {diag(δIIpI

) : δI ∈ ∆
1×1
LTV , I ∈ {1, ..., n}}.

(2)

In the degenerate case wherepI = 1 for every I ∈
{1, ..., n}, ∆rep is sometimes refered to as∆ind.
Problem Statement: Let M be a discrete, causal, sta-
ble, linear time-invariant (LTI) system characterized by
the impulse response{M(k)}∞k=0 and of dimension com-
patible with∆ ∈ ∆

rep, ‖∆‖∞−ind < 1, as illustrated
by Fig.1. The problem is to ascertain robustℓ∞-stability
of theM∆-loop, i.e., find conditions which allow to de-
termine whetherSN∆rep,∞(M) ≤ 1 or
SN∆rep,∞(M) > 1.
Proposed Solution: The above Problem Statement re-
quires the computation of the structured norm
SN∆rep,∞(M). As pointed out, a practical solution is
to develop necessary and sufficient conditions for ro-
bustℓ∞-stability of theM∆-loop in terms of upper and
lower bounds forSN∆rep,∞(M).



The following partitioning ofM (partitioning which
closely corresponds to that of the set∆

rep) will be used

extensively throughout this paper. Letq ,
n∑

I=1

pI and

define

M ,
[
M IJ

]

I∈{1,...,n}
J∈{1,...,n}

, (3)

whereM IJ ,

[

M IJ
ij

]

i∈{1,...,pI}

j∈{1,...,pJ}

. Note thatM hasq

inputs andq outputs, whileM IJ haspJ inputs andpI

outputs. The above partitioning ofM induces a corre-
sponding partitioning of its impulse response.

4 A Sufficient Condition for Robust
ℓ∞-Stability

A sufficient condition for robustℓ∞-stability of theM∆-
loop of the Problem Statement is presented next. An as-
sociated upper bound for the structured norm
SN∆rep,∞(M) is also derived.

The following notation is used in the sequel.
Given a sequence

a , {a1, ..., aI , ..., an}, (4)

whereaI ∈ Z
+, and a systemM partitioned according

to (3), define the augmented system

Ma ,










M11 0p1×a1
. . . M1n 0p1×an

0a1×p1
0a1×a1

. . . 0a1×pn 0an×an

...
...

.. .
...

...
Mn1 0pn×a1

. . . Mnn 0pn×an

0an×p1
0an×a1

. . . 0an×pn 0an×an










.

Theorem 4.1 Let M be a discrete, causal, stable, LTI
system of dimension compatible with∆ ∈ ∆

rep,
‖∆‖∞−ind < 1, as illustrated by Fig.1. Given any se-
quencea, as in (4), if there exists aD ∈ D

rep
a such that

‖D−1MaD‖1 ≤ 1, (5)

where

D
rep
a ,{diag(DI) : DI ∈ R

(pI+aI )×(pI+aI ),D1
11 = 1,

DI
11 ≥ ... ≥ DI

1(pI+aI ) ≥ 0, I ∈ {1, ..., n}},

(6)

then theM∆-loop is robustlyℓ∞-stable.

Proof: See [4] for a detailed proof.

Corollary 4.2 Consider the system of Theorem 4.1. For
any givena, as in (4), the optimization problem

SND
rep
a ,∞(M) , min

D∈D
rep
a

‖D−1MaD‖1 (7)

yields an upper bound for the structured norm ofM , i.e.,
SND

rep
a ,∞(M) ≥ SN∆rep,∞(M).

Condition (5) is referred to as thestandard suffi-
cient conditionwhen a = {0, ..., 0} and as theaug-
mented sufficient conditionwhena contains positive el-
ements. Note that robust stability conditions similar to
the standard sufficient condition are widely employed
in the control literature, while the augmented sufficient
condition has only been proposed very recently in [4].
It is clear from the definitions ofDrep

a andMa that the
augmented sufficient condition implies the standard one.
Yet, it was shown in [4], that the augmented sufficient
condition often leads to less conservative stability con-
ditions then its standard counterpart.

5 A Necessary Condition for Robust
ℓ∞-Stability

A necessary condition for robustℓ∞-stability of theM∆-
loop of the Problem Statement is presented next. An as-
sociated lower bound for the structured norm
SN∆rep,∞(M) is also derived.

The following notation is used in the sequel.
The class of admissible collections of subsets is de-

fined by

Υ ,{Υ : Υ = {Γ(κ)}υ−1
κ=0,Γ(κ) ⊆ Z

∗,Γ(κ) 6= ∅,

υ−1⋂

κ=0

Γ(κ) = ∅, υ ∈ Z
∗}.

Note that eachΥ ∈ Υ is a collection of distinct subsets
of Z

∗. Define

Y , {ΥIJ} I∈{1,...,n}
J∈{1,...,n}

, (8)

whereΥIJ = {ΓIJ(κ)}υIJ−1
κ=0 ∈ Υ, and

N , {NI}I∈{1,...,n}, (9)

whereNI ∈ Z
+.

For the above fixedn ∈ Z
+, υIJ ∈ Z

+, andNI ∈
Z

+, whereI, J ∈ {1, ..., n}, define the set of indices

x ,{(κ, ı, , I, J) : κ ∈ {0, ..., υIJ − 1}, ı ∈ {1, ..., NI},

 ∈ {1, ..., NJ}, I ∈ {1, ..., n}, J ∈ {1, ..., n}}

and the class of admissible sets of real numbers

d , {d = {dIJ
ı (κ)}(κ,ı,,I,J)∈x : dIJ

ı (κ) ∈ R}. (10)



Theorem 5.1 Let M be a discrete, causal, stable, LTI
system characterized by an impulse response{M(k)}∞k=0,
partitioned as in (3), and of dimension compatible with
∆ ∈ ∆

rep, ‖∆‖∞−ind < 1, as illustrated by Fig.1. For
givenN andY (as defined by (9) and (8)), if there exists
a set of real numbersd ∈ d satisfying:

i) ρ (Ξ(d)) > 1 (11)

whereΞ(d) ,
[
ξIJ

]

I∈{1,...,n}
J∈{1,...,n}

, ξIJ ,
[
ξIJ
ı

]

ı∈{1,...,NI}

∈{1,...,NJ}

,

ξIJ
ı ,

υIJ−1∑

κ=0
(dIJ

ı (κ)
∑

k∈ΓIJ (κ)

M IJ(k)), and

ii) max
{

NJ∑

=1

|dIJ
ı (κ)| : κ ∈ {0, ..., υIJ − 1}, (12)

I ∈ {1, ..., n}, J ∈ {1, ..., n}, ı ∈ {1, ..., NI}
}

< 1,

then theM∆-loop fails to be robustlyℓ∞-stable.

Proof: See [1] for a detailed proof.

Corollary 5.2 Consider the system of Theorem 5.1. For
any givenN andY, the optimization problem

SNY,N,∞(M) , max
d∈d

{ρ (Ξ(d)) : (12) holds} (13)

yields a lower bound for the structured norm ofM , i.e.,
SNY,N,∞(M) ≤ SN∆rep,∞(M).

Detailed guidelines for the choice ofN andY are
given in [1]. In particular, the following rules and de-
finitions will prove to be helpful in the context of the
practical application presented in§6.

Consider theM∆-loop as defined in the Problem
Statement. Without loss of generality, it is shown in [1]
that it is always possible to rearrange the impulse re-
sponse ofM so that

M IJ
11 (k) ≥ 0 (14)

for everyI ∈ {1, ..., n}, J ∈ {1, ..., n}, andk ∈ Z
∗.

Moreover, if for a givenI, pI = 1 (i.e. I corresponds to
a perturbation block which is not repeated), then
SNY,N,∞(M) achieves its maximal value with respect
to NI atNI = 1.

Corresponding to the impulse response ofM , define

ΥIJ
S , {ΓIJ

S (κ)}υ−1
κ=0,

whereΓ
IJ
S (κ) ,

{

Γ ∈ Z
∗ : M IJ(Γ) = αΓM IJ(κ̄),

αΓ ∈ R, κ̄ = min{k ∈ Z
∗ : k /∈

κ−1⋃

k̄=0

Γ
IJ
S (k̄)}

}

. The

Fig. 2: The op-amp non-inverting configuration and its equivalent
mathematical model. Symbols used:Vin andVout are the input and
output voltage signals, respectively;Rf and Rg are the feedback
and the grounded resistors, respectively; the blocksAOL andACL

describe the open-loop and closed-loop op-amp dynamics, respec-
tively; F denotes the feedback gain.

subsets of indices of the formΓIJ
S (κ) capture any possi-

ble linear dependence between any two matrices of the
form M IJ(k), k ∈ Z

∗. Similarly, let

ΥIJ
± , {ΓIJ

± (κ)}υ−1
κ=0

whereΓIJ
± (κ) ,

{

Γ ∈ Z
∗ : sgn

(
M IJ(Γ)

)
=

sgn
(
M IJ(κ̄)

)
, κ̄ = min{k ∈ Z

∗ : k /∈
κ−1⋃

k̄=0

Γ
IJ
± (k̄)}

}

.

The subsets of indices of the formΓIJ
± (κ) capture the

similarities between the distributions of nonnegative en-
tries in eachM IJ(k), k ∈ Z

∗. Note thatΥIJ
± ,ΥIJ

S ∈ Υ.

6 Application to Electronic Circuits
The theoretical developments of the previous sections
will be applied to study robustℓ∞-stability of an elec-
tronic circuit system comprising a pair of operational-
amplifiers (op-amps) and affected by exogenous noise
disturbances.

The electronic circuit system is described below in
terms of its mathematical model which captures the main
physical characteristics, operating conditions, and per-
formance objectives relevant to this circuit. Necessary
and sufficient robustℓ∞-stability conditions are then de-
rived based on Theorem 4.1 and Theorem 5.1. These
conditions are subsequently compared with experimen-
tal results (obtained using a harware circuit simulator) to
further assess their quality.

6.1 The Non-Inverting Op-Amp Configuration
Consider the set-up depicted in Fig.2. Fig.2a shows

an op-amp in standard non-inverting configuration, while
Fig.2b presents its equivalent mathematical model. The
closed-loop transfer function of this non-inverting con-
figuration is given by

ACL ,
Vout

Vin
=

AOL

1 + AOLF
,



Fig. 3: The original noisy circuit, the corresponding noisereduction
circuit, and the equivalent mathematical model of the noisereduction
circuit. Symbols used:Vin, Vout, andVnoise are the input, output,
and noise voltage signals, respectively;(R1

f , R1
g) and(R2

f , R2
g) are

the first and second stage pairs of resistors, respectively;the blocks
AOL, A1

CL andA2

CL describe the open-loop, first stage closed-loop,
and second stage closed-loop op-amp dynamics, respectively; F1,
F2, andK denote the first and second stage feedback gains and the
proportional controller, respectively.

whereF ,
Rg

(Rg+Rf ) . For the ideal case whereAOL =
∞,

ACL = 1 +
Rf

Rg
. (15)

6.2 Noise Reduction Problem
The noise reduction problem adressed in this paper is
also discussed in [14] as it is relatively common in prac-
tice. Consider the situation illustrated in Fig.3. Fig.3a
shows an electronic circuit with a pair of input and out-
put signals interconnected by a single amplifier stage
subjected to noise. It is assumed that the noise distur-
bance signalVnoise enters at the input of the op-amp.

The objective is to find a way to reduce the overall influ-
ence of this noise on the electronic circuit. In Fig.3b, an
additional (noise free) amplifier stage is introduced, pre-
processing the input signal to the noisy amplifier stage.
A negative proportional feedback controller closes the
loop between the input and output of this system. Pro-
vided that the values ofR1

f , R1
g andK are suitably cho-

sen, the proposed circuit of Fig.3b allows to reduce sig-
nificantly the influence ofVnoise under minimal change
of the input-output transfer functionVout

Vin
as displayed

by the original circuit of Fig.3a; see [14] for a detailed
explanation.

To acquire some insight into how the values ofR1
f ,

R1
g andK can be selected, it is customary to assume that

the op-amps used are ideal, i.e.,AOL = ∞. From Fig.3c
and equation (15), it follows that

Ai
CL , 1 +

Ri
f

Ri
g

, (16)

wherei ∈ {1, 2}. By principle of superposition,

Vout =
A1

CLA2
CL

1 + A1
CLA2

CLK
Vin +

A2
CL

1 + A1
CLA2

CLK
Vnoise.

In this context, the noise versus input reduction ratio is
given by

Vnoise

Vin
=

1

A1
CL

. (17)

Additionally, if it is desired to maintain the same ratio
Vout

Vin
= A2

CL in both circuits depicted in Figs.3a and 3b,
then the value of the controller gainK must be

K =
A1

CL − 1

A1
CLA2

CL

. (18)

Equations (17) and (18) suggest that the optimal way
to eliminate the undesirable influence ofVnoise, while
preserving the ratioVout

Vin
, is to increase the gain ofA1

CL

as much as possible and adjustK accordingly. Such an
approach is sufficient only under the additional assump-
tion that bothVin andVnoise are signals containing rel-
atively low frequency components. Therefore, any low
frequency disturbance issue, such as a DC offset, would
be efficiently attenuated. While the frequency charac-
teristics ofVin can be restricted to low pass, the same
does not hold forVnoise which typically exhibits a large
bandwith. As a result, sinceAOL is never ideal in prac-
tice, a blind application of the above strategy may re-
sult in undesirable transient behaviours, e.g., large over-
shoot spikes in the output signalVout. In these circum-
stances, the theory proposed in§3 to §5, in conjunction



with (17) and (18), offer a possibility to achieve a rea-
sonable trade-off between a desirable low frequency ra-
tio Vnoise

Vin
and an admissible peak-to-peak gain inVout

Vnoise

for the real op-amps circuit of Fig.3b.

6.3 Performance Objectives and Operating
Conditions

To appreciate the usefulness of the results presented in
§3, §4, and§5, six different noise reduction parameter
settings are studied towards assessing the quality of their
respective system transient response in terms of peak-
to-peak gain. These settings are derived directly from
(16)–(18) and are displayed in Table 1. Note that the
gain K increases from zero (open-loop case) to one as
the noise reduction ratioVnoise

Vin
decreases from0dB to

−100dB (almost complete noise attenuation case).
It is also assumed thatVnoise is a persistent signal

bounded in magnitude by±10mV. The critical perfor-
mance objective is thatVout remains within±15mV (i.e.,
Vout ≤ 150%‖Vnoise‖∞) whenVin = 0mV. The input
signalVin is set here to0mV for the purpose of the ro-
bust analysis, but it is reasonable to assume that any in-
put signals whose variations are restricted to the interval
±200mV may be significantly affected by the noise sig-
nal considered.

6.4 A Linear Model of the Circuit
The op-amps considered here are two identicalµ741
chips. Considering the above operating conditions, a
linear model of the open-loop dynamic of theµ741, de-
rived from Fairchild’sµ741 data sheet, see [7], and val-
idated with PSpice freeware version, see [13], is given
below

Aµ741
OL , A(s) + W∆(s)∆A, (19)

with A(s) , gA
2πfA

s+2πfA
, W∆ , g∆

s+0.01
s+2πf∆

, ∆A ∈

∆
1×1
LTV , ‖∆A‖∞−ind < 1, wheregA = 1.7 × 105, fA =

9.5Hz, g∆ = 0.1, and f∆ = 50kHz. As explained
in [6], the termW∆(s)∆A (with ∆A ∈ ∆

1×1
LTV and

‖∆A‖∞−ind < 1) including a perturbation block and
a high-pass filter, should be large enough to include any
possible unmodelled high frequency dynamics as well
as potential variations in temperature and power supply
that are known to alter the op-amp behaviour. Accord-
ing to [8], temperature and voltage supply fluctuations
are considered the most important external sources of
dynamic perturbations, but these are not critical here as
the temperature and voltage supply are kept constant at
27oC and12V, respectively.The above choice of oper-
ating conditions also prevents any op-amp saturation is-
sues.

Fig. 4: Typical robust performance block diagram for the noise re-
duction circuit. Symbols used:d andz are the disturbance and per-
formance signals, respectively; (u1,y1), (u2,y2), and (uK ,yK), are
pairs of command and measured signals for the first stage, second
stage, and controller, respectively; (u∆1,y∆1) and (u∆2,y∆2) are
pairs of output and input signals for the first and second stage pertur-
bations, respectively;Vin, Vout, andVnoise are the input, output, and
noise voltage signals, respectively; the blocksA(s), F1, F2, andK

describe the op-amp linear approximation of the open-loop dynamic,
the first and second stage feedback gains, and the controller, respec-
tively; ∆A and∆P denote the op-amp and performance perturbation
blocks, respectively; the blockWd, Wz, andW∆(s) describe the
disturbance, performance, and op-amp perturbation weights, respec-
tively; G denotes the augmented plant;M denotes the system to be
investigated in anM∆-loop as proposed in the Problem Statement.

The electronic circuit system of Figs.3b and 3c is
further represented in the form of the block diagram
shown in Fig.4 to include (19) as well as the weight-
ing functionsWd = 0.01 andWz = 1

0.015 . The weights
Wd andWz correspond toVnoise being bounded in mag-
nitude by10mV and toVout remaining within±15mV
at all times (provided thatVin = 0mV), respectively.
Fig.4 then captures all the fundamental characteristics
of the circuits and accounts of all the performance re-
quirements essential in this study.

An equivalent representation of the block diagram
depicted in Fig.4 is given by equation (20) in the form
of an augmented plantG. The noise reduction circuit is
then converted to theM∆-loop form considered in the
Problem Statement of§3, where

M = Fl(G,diag(F1, F2,K)),

∆ = diag(∆A,∆A,∆P ),

and‖∆‖∞−ind < 1. According to (2), in this particular
example,∆ ∈ ∆

rep with n = 2, p1 = 2, andp2 = 1.
It is important to note that the introduction of a perfor-
mance block∆P , see [10] and [11], allows to transform
the robust performance problem into a robust stability



Table 1: Parameter Settings
Parameter Set #1 #2 #3 #4 #5 #6
Vnoise

Vin
(ideal) 0dB −3dB −6dB −9dB −12dB −100dB

Vin

Vout
(ideal) 0dB 0dB 0dB 0dB 0dB 0dB

(R1

f , R1
g) (0Ω, ∞Ω) (995Ω, 1kΩ) (2.98kΩ, 1kΩ) (6.94kΩ, 1kΩ) (14.9kΩ, 1kΩ) (10GΩ, 1kΩ)

(R2

f , R2
g) (0Ω, ∞Ω) (0Ω, ∞Ω) (0Ω, ∞Ω) (0Ω, ∞Ω) (0Ω, ∞Ω) (0Ω, ∞Ω)

K 0 .499 .749 .874 .937 1











y∆1

y∆2

z
y1

y2

yK











=
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problem, i.e.,

max
∆A∈∆

1×1

LTV
‖∆A‖∞−ind<1

‖Fu(M,diag(∆A,∆A))‖∞−ind ≤ 1

⇐⇒ SN∆rep,∞(M) ≤ 1.

Finally, the systemM is converted into discrete-time
form (by using bilinear Tustin approximation with a
sample-time of10−7 seconds) where its impulse response
is truncated after30 impulses without any significant
loss of information. The robustℓ∞-stability analysis
of the M∆-loop is therefore possible by way of com-
puting upper and lower bounds for the structured norm
SN∆rep,∞(M) using the methodology proposed in§4
and§5.

6.5 Numerical Results
The numerical results are displayed in Tables 2 and 3.
The upper and lower bounds for the structured norm of
M are computed using Matlab and a nonsmooth opti-
mization toolbox Solvopt, see [9]. For each upper and
lower bound value,20 to 100 local searches are per-
formed and the best cost value is displayed. Each local
search is initiated by a randomly chosen starting condi-
tion selected over the appropriate feasible set (i.e., (6)
or (12)). The results are interpreted below and simula-
tions involving the hardware simulator PSpice, see [13],
confirm their correctness.

The results in Table 2 refer to the six parameter set-
tings of Table 1 corresponding to different levels of de-
crease in the idealVnoise

Vin
ratio. For each parameter set,

the upper and lower bound values are computed by em-
ploying Corollaries 4.2 and 5.2. The results in Table 2

allow to assess whether the robust performance objec-
tive is satisfied (i.e., whether‖Vout‖∞ ≤ 15mV when
‖Vnoise‖∞ ≤ 10mV andVin = 0mV). It is seen that
the robust performance criterion is met for the first three
parameter settings which impose a less strict low fre-
quency noise reduction requirement. Note that, in all
cases selected, it is possible to assess the satisfaction
of SN∆rep,∞(M) ≤ 1 because1 /∈ [SNY,N,∞(M),
SND

rep
a ,∞(M)]. It is however clear that a very small

tightening of the performance objective (say by impos-
ing‖Vout‖∞ ≤ 14.9mV) would place1 ∈ [SNY,N,∞(M),
SND

rep
a ,∞(M)] for parameter set#3. The upper bound

valueSND
rep
a ,∞(M) as well as the size of the gap

SND
rep
a ,∞(M) − SNY,N,∞(M) are seen to increase

less rapidly for lower ratios ofVnoise

Vin
. It is hence rea-

sonable to conjecture that even a very large reduction
of the ideal Vnoise

Vin
ratio (such as−100dB with para-

meter set#6) would result in a limited (albeit signif-
icant) deterioration of the transient response toVnoise.
This fact is confirmed by PSpice simulations as illus-
trated in Fig.5. For completeness, note that the results
indicate thatSND

rep
a ,∞(M) − SNY,N,∞(M) ≤ 6% ·

SND
rep
a ,∞(M).

For the critical parameter set#3, further lower and
upper bound values, corresponding to different choices
of the sequencea, the ordered setY, and the sequence
N (see Corrollaries 4.2 and 5.2), are displayed in Ta-
ble 3. Similar results could be shown to hold for the
other parameter configurations as well. The results of
Table 3, labeled UBi, LBi, i = {1, 2, 3}, in terms of the
respective bounds, complement those of Table 2 in what
follows.



Table 2: Best Upper and Lower Bounds
Parameter Set #1 #2 #3 #4 #5 #6

Smallest Upper Bound forSN∆rep,∞(M) (i.e., tightestSND
rep
a ,∞(M)) .836 .835 1.000 1.106 1.168 1.237

Largest Lower Bound forSN∆rep,∞(M) (i.e., tightestSN
Y,N,∞(M)) .836 .802 .950 1.048 1.103 1.164

Size of the Gap (i.e.,SN
D

rep
a ,∞(M) − SN

Y,N,∞(M)) 0 .033 .050 .058 .065 .073
Satisfaction of the Robust Performance Objective (i.e.,SN∆rep,∞(M) ≤ 1) yes yes yes no no no

Table 3: Details of the Upper and Lower Bounds of Parameter Set #3
Upper Bounds forSN∆rep,∞(M) Lower Bounds forSN∆rep,∞(M)

SN
∆ind,∞(M) = SN

D
rep
a ,∞(M) SN

Y,N,∞(M)

ρ
��

‖MIJ‖1

�
I∈{1,2,3}
J∈{1,2,3}

�
a = {0, 0} a = {1, 0} Y = {ΥIJ

S } I∈{1,2}
J∈{1,2}

Y = {ΥIJ
± } I∈{1,2}

J∈{1,2}

N = {2, 1} N = {4, 1} N = {1, 1}

UB1 = 1.027 UB2 = 1.006 UB3 = 1.000 LB3 = .950 LB2 = .937 LB1 = .930

Although UB1 is a bound initially developed forM∆-
loop systems subject to independent perturbations, it also
delivers a valid upper bound in the presence of repeated
perturbations as∆ind ⊃ ∆

rep. The upper bound UB3
is clearly the best one as it is the only one that guaran-
tees the required performance. The absolute improve-
ment of the upper bound value that imparts to the aug-
mented approach, as compared to its standard counter-
part, is0.006 = UB2 −UB3. The importance of this re-
sult is best elucidated by comparing it to the size of the
gap: 12.0% = UB2−UB3

UB3−LB3
100%. A similar comparison

between UB3 and UB1 yields54.0% = UB1−UB3

UB3−LB3
100%.

This improvement is obtained with only a very small
increase in the overall computational cost. Moreover,
while only one augmentation pattern (a = {1, 0}) al-
lows for a significant improvement of its associated up-
per bound value, there exists other examples which re-
quire more complex choices fora, see [4] for such an
example.

As indicated in§5, N2 = 1 in all the three choices
of the sequenceN required for lower bound computa-
tion. As expected, the computational effort grows signif-
icantly with the required precision of the lower bound.
Nevertheless, although the absolute difference between
LB3 and LB2 as well as between LB3 and LB1 is only
0.013 = LB3 − LB2 and0.020 = LB3 − LB1, respec-
tively, the corresponding relative improvement with re-
spect to the size of the gap is26.0% = LB3−LB2

UB3−LB3
100%

and40.0% = LB3−UB1

UB3−LB3
100%, respectively. Consequently,

while lower bounds involvingΥIJ
± may often be advan-

tageous due to their cheaper computational cost, it is cer-
tainly worth spending additional computational effort on
the computation of a thighter lower bound based onΥIJ

S

if the robustness problem at hand is difficult to assess
(i.e., when1 ∈

[
SNY,N,∞(M), SND

rep
a ,∞(M)

]
).

Finally, Fig.5 shows the results of the PSpice sim-

ulation in which the first panel presents a meaningful
benchmarkVnoise signal, while the remaining ones dis-
play the system outputVout for the six different parame-
ter choices. The solid lines at±15mV are thresholds for
the satisfaction of the performance objective. Note that
the system with parameter set#3 barely satisfies the ob-
jective while the sets#4 − 6 fails to do so, see Figs.5d
to 5g. Also observe that the DC gain ofVnoise

Vout
decreases

monotonically with respect to the requiredVnoise

Vin
ratio

as expected from the ideal circuit analysis of§6.2.

7 Conclusion
A pair of necessary and sufficient conditions for robust
ℓ∞-stability of systems withrepeated, linear time-varying,
inducedℓ∞-norm bounded perturbations are presented
in this paper. The necessary condition complements the
sufficient condition in that it allows to better estimate the
value of the structured norm associated with any given
robustℓ∞-stability problem of the type investigated in
this paper. The quality of such estimation is determined
by the size of the gap between the corresponding upper
and lower bounds.

The proposed theory is shown to be useful for de-
sign purposes as confirmed by an application in the field
of electronic circuits. Moreover, the simulation results
obtained using PSpice, which are comparable to experi-
mental results, further support the conclusion reached.

Future research is intended to compare the theory re-
cently presented in [5] to the one proposed in this paper
in the context of the noisy electronic circuit application
investigated in§6.
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