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Abstract: - The paper presents a pair of necessary and sufficient aamslifor robust/,.-stability of discrete-
time systems with structured, repeated, linear time-waryinduced.-norm bounded perturbations. The quality of
these conditions is confirmed employing a realistic exarimplelving an electronic circuit with repeated operational
amplifiers, persistent noise disturbances, and peakdk-gain performance objectives.
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1 Introduction lar type of system augmentation within the scaled small
Robust/,-stability problems are usually re-stated as sat- gain theorem. The result is conceptually simple, yet it
isficing problems involving the computation of a struc- permits a significant decrease in the conservativeness
tured norm; seé3 for a definition of the structured norm of design and analysis in many robustness problems as
and see [6] for a comprehensive summary of relevantcompared with previous techniques, see [3] and [4]. On
results and references. However, in general, the exacthe other hand, the new necessary condition allows to
computation of the structured norm is a very difficult assess the tightness of the proposed sufficient condition
task. It is hence customary to substitute the structuredand to identify ineffective (i.e., non-robust) designss se
norm by its upper bound approximation as derived from [1].
the scaled small gain theorem. The level of conserva-  The derived results are applied to a practical robust
tiveness of such upper bound depends on the nature of-.-performance problem involving an electronic circuit
the robust stability problem, more precisely, the class of with repeated operational-amplifiers, persistent noise di
perturbations considered. turbances, and peak-to-peak gain performance objectives.

In the particular case when the perturbations are strud-he numerical and experimental results obtained con-
tured, independent (i.e., not repeated), linear timeimgry firm the efficiency of the proposed approach.
(LTV), and induced,.-norm bounded, it was shown by The paper is structured as follows. The required no-
KhammaslizPearson, [11], that the abovementioned up- tation is introduced i2. Then, the robustness problem
per bound is indeed equal to the structured norm valueis stated ir§3, followed by the corresponding sufficient
itself. Similar results derived later, see Shamma, [15], and necessary conditions for stability §4 and§5, re-
and Yound:Dahleh, [16], extend these results to the in- spectively. Finally, the theoretical results are applied t
duced/s-norm bounded problem and to the general in- a realistic example i§6.
duced/,-norm bounded problem, respectively.

Since systems with repeated components appear of2  Notation

ten in practical applications, see [2], the class of robust| et (,,,,,, and I,, denote the zero matrix of dimension
stability problems with repeated perturbations certainly ,;; x ,, and the identity matrix of dimensionx n, respec-
deserves more attention. Unfortunately, the above re-jyely. For any matrix4 € R™*", A £ | Aijlieq
sults fail to hold for structuredepeated LTV, induced _ - o JE{L, o}
¢.-norm bounded perturbations which motivates the de-Where; is thi” " entry of A. Similarly, for any vec-
velopments of the present paper where new necessar}®f @ € R, a = [a1. "%]T’ wherea; is thei™ entry
and sufficient conditions for the stability of such sys- Of a- This notation carries to the case of MIMO sys-
tems are derived. The new sufficient stability condi- ©€MS and vector signals. Let” andp(A) denote the
tion is derived from the implementation of a particu- Tanspose and the spectral radius of the matjxre-



spectively. Given a matrid € R™*", define

sgn(A) = [sgn(Aij)]ieq1,..my

j€{1,...,n}

-1 if Az‘j <0

Consider the systen®? partitioned as followsP =
Pll 12

|:P21 P22

patible with P22, let

Fi(P,Q)

wheresgn(4;;) £ {
} . Given the systen® of dimension com-
épll

+ P12Q(I o P22Q)—1P21

denote the lower linear fractional transformation betweenSNa (M ) £

P and@. Similarly, given the systenk of dimension
compatible withP!!, let

F,(P,R) & P?2 + P?'R(I — P'R)"'p!?

denote the upper linear fractional transformation between

P andR.

Let ¢} denote the space of all infinite sequences
{s(k)}32, of vectors of lenght, s(k) € R", equipped
with the norm||s||, < oo, where

£ SN Isihp

k=0 =0

51l

Forp = oo, also defing|s||lo = sup max |s;(k)|.
0t€

1,....,n
Given a bounded operatof: £ — 6;” with s — S(s),
let

15(s)llp

18 /lp—ind =
m 55

sup
s#£0

be the induceg-norm of S. Furthermore, ifS is lin-
ear and causal, theﬁi( ) is determined by the convo-

lution (S * s)(k) = Z S(k,l)s(l), whereS(k,l) de-
notes the kernel oS In the case whel |s also time-
ZS l)s(k

1=0

1), where{S(l)}72, is the impulse respoﬁse Sf Then,
it is known that, see [6]]S||cc—ind = ||:5]]1, Where

ZZ 15i5(k

=1 k=0

invariant,S(s) simplifies to(S * s)(k) £

IS]: £

max
i€{l,....m

(1)

3 Problem Statement
Let the setA denote a given class of admissible per-
turbations which carries all the important information

.

Fig. 1: TheM A-loop.

relevant to the nature and structure of the perturbations.
Assume thatA € A and thatM is a system of dimen-
sion compatible withA, as illustrated by Fig.1. The
structured norm of\/ is then defined as:

Jnf (1A —ina:(I- MA) 1 is not/,-stable -
If for every A € A, (I — MA)~! remains/,-stable,
then it is assumed th&tNa , (M) = 0. Recall that, the
structured norm is not a norm, see [6].
Furthermore, assuming thit\|[,_i,q < 1, itis
seen that robust,-stability of the M/ A-loop is equiv-
alent to the condition:SNa ,(M) < 1. However, in
general, it is not possible to compufVa ,(M) ex-
actly due to the complexity of such a task. Practical ap-
proaches hence rely on the derivation of upper and lower
bounds forSNa , (M) that can be computed with rela-
tive ease, but at the cost of introducing some conserva-
tivess.

Given an integen € Z* together withn integers
pr € Z*, I € {1,...,n}, define the following classes of
perturbations:

A5y = {A: Ais SISO, causal, and LTV

A" 2 (diag(d;1,,) : 6 € AL T € {1, ...,

)

In the degenerate case wherg = 1 for every I €
{1,...,n}, AT is sometimes refered to @&,

Problem Statement: Let M be a discrete, causal, sta-
ble, linear time-invariant (LTI) system characterized by
the impulse respongg\/ (k) }7° , and of dimension com-
patible withA € AP, ||Al|so—ina < 1, as illustrated
by Fig.1. The problem is to ascertain robdgt-stability

of the M A-loop, i.e., find conditions which allow to de-
termine whetheS Narer oo (M) < 1 0r

SNA7~ep700(M) > 1.

Proposed Solution: The above Problem Statement re-
quires the computation of the structured norm

SNarer oo(M). As pointed out, a practical solution is
to develop necessary and sufficient conditions for ro-
bust/.-stability of the M A-loop in terms of upper and
lower bounds folSNarer oo (M).



The following partitioning ofd/ (partitioning which
closely corresponds to that of the g&t<P) will be used

extensively throughout this paper. Lt S pr and
I=1

define

(3)

where M1/ £ [M;}J] .- Note thatM hasq
inputs andg outputs, whileM/ !’ hasp; inputs andp;
outputs. The above patrtitioning éff induces a corre-

sponding partitioning of its impulse response.

4 A Sufficient Condition for Robust
{.-Stability

A sufficient condition for robust..-stability of theM A-

Corollary 4.2 Consider the system of Theorem 4.1. For
any givena, as in (4), the optimization problem

_ A .
SNprer oo (M) = pln., D™ MaD|1r  (7)
yields an upper bound for the structured norm\éf i.e.,
SNDgep,OO(M) Z SNATEP7OO(M).

Condition (5) is referred to as thetandard suffi-
cient conditionwhena = {0,...,0} and as theaug-
mented sufficient conditiomhena contains positive el-
ements. Note that robust stability conditions similar to
the standard sufficient condition are widely employed
in the control literature, while the augmented sufficient
condition has only been proposed very recently in [4].
It is clear from the definitions aD,” and M, that the
augmented sufficient condition implies the standard one.
Yet, it was shown in [4], that the augmented sufficient

loop of the Problem Statement is presented next. An ascondition often leads to less conservative stability con-

sociated upper bound for the structured norm
SNarer oo(M) is also derived.
The following notation is used in the sequel.
Given a sequence

(4)

wherea; € Z™", and a systend/ partitioned according
to (3), define the augmented system

a={ay,..,ar,...,an},

11 1n
M 0p; xar M 0p; xan
Oal Xp1 Oal xXay 0(11 XPn Oan Xan
A . .
Ma - : :
nl nn
M 0p,, xar M 0p,, xan
L Oan Xp1 Oanxal Oan XPpn Oanxan u

Theorem 4.1 Let M be a discrete, causal, stable, LTI
system of dimension compatible withe A"cP,
IA]lco—ina < 1, as illustrated by Fig.1. Given any se-
quencea, as in (4), if there exists ® € D such that

ID™'MaD|); <1, (5)
where

D &{diag(D’) : D! € RPrraDxprtan pl =1,
DI > .. > D{(pﬁa[) >0,1¢€{1,..,n}},

(6)
then theM A-loop is robustly/-stable.

Proof: See [4] for a detailed proof.

ditions then its standard counterpart.

5 A Necessary Condition for Robust
{-Stability
A necessary condition for robuét, -stability of theM A-
loop of the Problem Statement is presented next. An as-
sociated lower bound for the structured norm
SNarer oo(M) is also derived.
The following notation is used in the sequel.
The class of admissible collections of subsets is de-
fined by

YT A{T:T ={T(x)}"Z},T(k) C Z*T(k) # 0,
v—1

(L) =0,vez}

xk=0

Note that eaclr € Y is a collection of distinct subsets
of Z*. Define

Y2 (Y} e s (8)

Je{1,..., n}

9)

whereN; € Z+.
For the above fixea € Z*, v;y € Z*, andN; €
Z*, wherel, J € {1,...,n}, define the set of indices

x ={(k,1,9,1,J) : 6 € {0,...,vr; — 1},2 € {1,...,N;},
ge{l,...N;}, I e{l,...,n},J €{1,...,n}}

and the class of admissible sets of real numbers

d £ {d = {dZI]J('%)}(H,Z,_],I,J)GX : dzIJJ(KV) € R}' (10)



Theorem 5.1 Let M be a discrete, causal, stable, LTI
system characterized by an impulse respdngk) } 2° .
partitioned as in (3), and of dimension compatible with
A€ A" ||Alloo—ind < 1, asillustrated by Fig.1. For
givenN andY (as defined by (9) and (8)), if there exists
a set of real numberg € d satisfying:

i) p(E(d) > 1 (11)
whereE(d) = [fl‘]] Ie{1,....n} » fl‘] = [ ZIJJ] 1€{1,....,Ny}
Je{1,...,n} 7€{1,....,N s}
vrJ =
g e X (dy (k) > M'Y(k)), and
k=0 kel (k)
Ny
i) max{» | (k)| :k€{0,..,v1 =1}, (12)
=1

Ie{l,..,n},Je{l,..,n},ve{l,.,Ni}} <1,
then theM A-loop fails to be robustly,.-stable.
Proof: See [1] for a detailed proof.

Corollary 5.2 Consider the system of Theorem 5.1. For
any givenN andY, the optimization problem
SNy N,00o(M) = max{p (E(d)) : (12) holds} ~ (13)
Y €

yields a lower bound for the structured normdf, i.e.,
SNy N oo(M) < SNarer oo (M),

Detailed guidelines for the choice ¥ andY are
given in [1]. In particular, the following rules and de-
finitions will prove to be helpful in the context of the
practical application presented§8.

Consider theM A-loop as defined in the Problem
Statement. Without loss of generality, it is shown in [1]
that it is always possible to rearrange the impulse re-
sponse of\/ so that

M{{ (k) >0 (14)

foreveryl € {1,....n}, J € {1,...,n}, andk € Z*.
Moreover, if for a givenl, p; = 1 (i.e. I corresponds to
a perturbation block which is not repeated), then
SNy N« (M) achieves its maximal value with respect
to NyatN; = 1.

Corresponding to the impulse responsébfdefine

v—1
k=0

Y £ T ()
whereD/ (k) 2 {F e Z* . MY(T) = arMU(R),

Kk—1

ar € R,i = minf{k € Z* : k¢ U rgJ(z;)}}. The
k=0

Pour
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Fig. 2: The op-amp non-inverting configuration and its eglamt
mathematical model. Symbols usdd;, andV,: are the input and
output voltage signals, respectiveliRy and R, are the feedback
and the grounded resistors, respectively; the blotks and Acr
describe the open-loop and closed-loop op-amp dynamispece
tively; F' denotes the feedback gain.

subsets of indices of the fori}/ () capture any possi-
ble linear dependence between any two matrices of the
form M'7(k), k € Z*. Similarly, let

T 2 (Pl (n) 1]

~k=0

wherel'l/ (k) & {F € Z* : sgn (M7 (1)) =

k—1 -~
sen (M1(7)) & = min{k € Z" - k ¢ | I‘Ii"(k)}}.

k=0
The subsets of indices of the forf,/ (k) capture the
similarities between the distributions of nonnegative en-

tries in eachV/ 17 (k), k € Z*. Note thatrl/, YL/ € Y.

6 Application to Electronic Circuits

The theoretical developments of the previous sections
will be applied to study robust..-stability of an elec-
tronic circuit system comprising a pair of operational-
amplifiers (op-amps) and affected by exogenous noise
disturbances.

The electronic circuit system is described below in
terms of its mathematical model which captures the main
physical characteristics, operating conditions, and per-
formance objectives relevant to this circuit. Necessary
and sufficient robust.,-stability conditions are then de-
rived based on Theorem 4.1 and Theorem 5.1. These
conditions are subsequently compared with experimen-
tal results (obtained using a harware circuit simulator) to
further assess their quality.

6.1 The Non-Inverting Op-Amp Configuration

Consider the set-up depicted in Fig.2. Fig.2a shows
an op-amp in standard non-inverting configuration, while
Fig.2b presents its equivalent mathematical model. The
closed-loop transfer function of this non-inverting con-
figuration is given by

A V;)ut AOL




p;aoise

* Vou

e}

Fig. 3: The original noisy circuit, the corresponding naigduction
circuit, and the equivalent mathematical model of the naégleiction
circuit. Symbols usedV;,, Vout, andV,.ise are the input, output,
and noise voltage signals, respectivelit;, ;) and (R?, R;) are
the first and second stage pairs of resistors, respectitredyblocks
Aor, AL andAZ; describe the open-loop, first stage closed-loop,
and second stage closed-loop op-amp dynamics, respgctivel

F5>, andK denote the first and second stage feedback gains and the

proportional controller, respectively.

Ry

N
whereF = Rt Fp):

oo,

For the ideal case whetéy; =

R
ACL:1+—f.

T (15)

6.2 Noise Reduction Problem

The noise reduction problem adressed in this paper i
also discussed in [14] as it is relatively common in prac-
tice. Consider the situation illustrated in Fig.3. Fig.3a
shows an electronic circuit with a pair of input and out-
put signals interconnected by a single amplifier stage
subjected to noise. It is assumed that the noise distur-
bance signal/,,.;s. enters at the input of the op-amp.

The objective is to find a way to reduce the overall influ-
ence of this noise on the electronic circuit. In Fig.3b, an
additional (noise free) amplifier stage is introduced, pre-
processing the input signal to the noisy amplifier stage.
A negative proportional feedback controller closes the
loop between the input and output of this system. Pro-
vided that the values Q‘R}, R; and K are suitably cho-
sen, the proposed circuit of Fig.3b allows to reduce sig-
nificantly the influence o¥,,.;s under minimal change
of the input-output transfer functlor‘—(% as displayed
by the original circuit of Fig.3a; see [14] for a detailed
explanation.

To acquire some insight into how the values}b}‘,
R}] and K can be selected, it is customary to assume that
the op-amps used are ideal, i.8; = co. From Fig.3c
and equation (15), it follows that

(16)

wherei € {1,2}. By principle of superposition,

At AL
1+ AL A2 K

2
ACL

Vout = — ~CL__
out 1+AéLA%LK

‘/in + notse-

In this context, the noise versus input reduction ratio is
given by

Vnoise _ 1
Vin  Afp

17)

Additionally, if it is desired to maintain the same ratio
‘(‘;ui A2 &, In both circuits depicted in Figs.3a and 3b,
then the value of the controller gaii must be

AL, —1
K=-¢ _— 18
AL AT 4o

Equations (17) and (18) suggest that the optimal way
to eliminate the undesirable influence Wf,;s., while
preserving the ratlé/or“ is to increase the gain of},,
as much as pOSSIble "and adjustaccordingly. Such an
approach is sufficient only under the additional assump-
tion that bothV;,, andV,,.;s. are signals containing rel-
atively low frequency components. Therefore, any low
frequency disturbance issue, such as a DC offset, would

be efficiently attenuated. While the frequency charac-

Seristics ofV;,, can be restricted to low pass, the same

does not hold fol,,.;s. Which typically exhibits a large
bandwith. As a result, sincégy, is never ideal in prac-
tice, a blind application of the above strategy may re-
sult in undesirable transient behaviours, e.g., large-over
shoot spikes in the output signgl,;. In these circum-
stances, the theory proposedsBito §5, in conjunction



with (17) and (18), offer a possibility to achieve a rea-

sonable trade-off between a desirable low frequency ra-
tio VHVL and an admissible peak-to-peak gainipu
for the real op-amps circuit of Fig.3b. o

6.3 Performance Objectives and Operating
Conditions N
To appreciate the usefulness of the results presented il )
63, 84, and$§5, six different noise reduction parameter
settings are studied towards assessing the quality of thei
respective system transient response in terms of peak
to-peak gain. These settings are derived directly from

(16)—(18) and are displayed in Table 1. Note that the _ _ _ _

. . Fig. 4: Typical robust performance block diagram for theseadie-
gain K_ mcreases. from _Ze“? (open-loop case) to one 3Sduction circuit. Symbols used! andz are the disturbance and per-
the noise reduction ratlé’ﬁ decreases fromdB to formance signals, respectivelyyi(y1), (uz,y2), and @, yx), are
—100dB (almost complete noise attenuation case). pairs of command and measured signals for the first stagendec

It is also assumed that,.. is a persistent signal ~ Stage, and controller, respectivelyyi,ya1) and (az yaz) are

. . S . pairs of output and input signals for the first and secondespegtur-
bounded in magnitude by-10mV. The critical perfor bations, respectively,, Vout, andVi.ise are the input, output, and

mance objective is thaf,,; remains withint15mV (i.e., noise voltage signals, respectively; the bloeks), Fi, F», and K
Vout < 150%]|Vioise|loo) WhenV;, = OmV. The input  describe the op-amp linear approximation of the open-lgoudic,

signalV;,, is set here t@mV for the purpose of the ro-  the firstand second stage feedback gains, and the contretipec-

: o . tively; A 4 andA p denote the op-amp and performance perturbation
bust analysis, but it is reasonable to assume that any INElocks, respectively: the block/s, V.. and Wa (s) describe the

put signals whose variations are restricted to the intervalgisiurbance, performance, and op-amp perturbation weigsspec-
+200mV may be significantly affected by the noise sig- tively; G denotes the augmented plait: denotes the system to be

nal considered. investigated in ar/ A-loop as proposed in the Problem Statement.
6.4 A Linear Model of the Circuit
The op-amps considered here are two identjcall The electronic circuit system of Figs.3b and 3c is

chips. Considering the above operating conditions, afurther represented in the form of the block diagram
linear model of the open-loop dynamic of thg41, de- ~ Shown in Fig.4 to include (19) as v;/ell as the weight-
rived from Fairchild’su741 data sheet, see [7], and val- ing functionsiVy = 0.01 andW, = 55¢=. The weights

idated with PSpice freeware version, see [13], is given Wa andW’ correspond td/,,;5c being bounded in mag-
below nitude by10mV and toV,,; remaining withint15mV
at all times (provided that;,, = 0mV), respectively.
Agl‘“ 2 A(s) + Wa(s)Aa, (19) Fig.4 then captures all the fundamental characteristics
of the circuits and accounts of all the performance re-
with A(s) £ gASi’;f;}A, Wa £ gadeso, Aa € quirements essential in this study.

AV A llsoing < 1, Wheregs = 1.7 x 10%, f4 = An equivalent representation of the block diagram

9.5Hz, g» = 0.1, and fa = 50kHz. As explained depicted in Fig.4 is given by equation (20) in the form

in [6], the termWa(s)A 4 (With Ay € A1L>7<“1V and of an augmented plargt. The noise reduction circuit is

[AAllsoina < 1) including a perturbation block and then converted to thé/ A-loop form considered in the

a high-pass filter, should be large enough to include anyProblem Statement ¢8, where

possible unmodelled high frequency dynamics as well ]

as potential variations in temperature and power supply M = F(G, diag(F1, F2, K)),

that are known to alter the op-amp behaviour. Accord- A = diag(Aa, A, Ap),

ing to [8], temperature and voltage supply fluctuations . o _

are considered the most important external sources ofNdlIAlleo—ina < 1. According to (2), in this particular
dynamic perturbations, but these are not critical here a£X@mple.A € A" with n = 2, p; = 2, andpy = 1.

the temperature and voltage supply are kept constant ait is important to note that the introduction of a perfor-
927°C and 12V, respectively.The above choice of oper- Mance blockAp, see [10] and [11], allows to transform

ating conditions also prevents any op-amp saturation isthe robust performance problem into a robust stability
sues.




Table 1: Parameter Settings

Parameter Sef]  #1 #2 | #3 | #4 #5 | #6
Treize (ideal) 0dB —3dB —6dB —9dB —12dB —100dB
722 (ideal) 0dB 0dB 0dB 0dB 0dB 0dB
(Rf, ) (00, c0Q) | (9952, 1kQ2) | (2.98K2, 1kQ) | (6.94K2, 1kQ) | (14.9K2, 1kQ) | (10GR, 1k)
(R7, RZ) (09, Q) | (09, 0of) (092, 00Q) (092, 0o0) (092, 0o0) (092, 00Q)
K 0 499 749 874 937 1
[ yar ]| I 0 0 0 —Wal(s) 0 —Wal(s) 7 [ war ]
YA2 Wa(s) 0 Wa(s)Wq —Wa(s)A(s) —Wal(s) —Wa(s)A(s) UA2
z || WLA(s) W, W.W4A(s) —W,A%(s) —W,A(s) —W,A%(s) d (20)
yi | 1 0 0 —A(s) 0 —A(s) Uy
Y2 A(s) 1 WiA(s) —A2(s) —A(s) —A2(s) us
Lye 1 L Als) 1 W4A(s) —A%(s) —A(s) —A%s) ] L uk |
G
problem, i.e., allow to assess whether the robust performance objec-
tive is satisfied (i.e., whethéfV,,:||.c < 15mV when
AATEHABL?XTIV [ Fu(M, diag(Aa, Aa))|lco—ind <1 [Vioiselloo < 10mV and V;,, = 0mV). It is seen that

the robust performance criterion is met for the first three
parameter settings which impose a less strict low fre-
guency noise reduction requirement. Note that, in all
cases selected, it is possible to assess the satisfaction

form (by using bilinear Tustin approximation with a of SNareroo(M) < 1 becausel ¢ [SNy n (M),
sample-time o10~" seconds) where its impulse responseS N prer o (M)]. It is however clear that a very small
is truncated afteB0 impulses without any significant tightening of the performance objective (say by impos-
loss of information. The robust,.-stability analysis NG ||Vout|leo < 14.9mV) would placel € [SNy N o (M),
of the M A-loop is therefore possible by way of com- S—ND;epvoo(M)] for parameter se#3. The upper bound
puting upper and lower bounds for the structured normva|ues—ND£ep7

(M) as well as the size of the gap
SNarer 5o(M) using the methodology proposed §4 S—NDrep (M) — SNy N (M) are seen to increase
andsb.

less rapldly for lower ratios of/"f)—“e It is hence rea-
6.5 Numerical Results sonable to conjecture that even a very large reduction

The numerical results are displayed in Tables 2 and 3.9 the ideal “gei< rafio (such as-100dB with para-
The upper and lower bounds for the structured norm of Meter set#6) Would result in a limited (albeit signif-
M are computed using Matlab and a nonsmooth opti- icant) deterioration of the transient response/tg;s..
mization toolbox Solvopt, see [9]. For each upper and This fact is confirmed by PSpice simulations as illus-
lower bound value20 to 100 local searches are per- trated in Fig.5. For completeness, note that the results
formed and the best cost value is displayed. Each locafhdicate thatSNprer (M) — SNy n oo (M) < 6% -
search is initiated by a randomly chosen starting condi- SN DL o0 (M).
tion selected over the appropriate feasible set (i.e., (6)  For the critical parameter sgt3, further lower and
or (12)). The results are interpreted below and simula-upper bound values, corresponding to different choices
tions involving the hardware simulator PSpice, see [13], Of the sequence, the ordered seY, and the sequence
confirm their correctness. N (see Corrollaries 4.2 and 5.2), are displayed in Ta-
The results in Table 2 refer to the six parameter set-ble 3. Similar results could be shown to hold for the
tings of Table 1 corresponding to different levels of de- other parameter configurations as well. The results of
crease in the ideafzei« ratio. For each parameter set, Table 3, labeled UBLB;, i = {1,2,3}, in terms of the
the upper and |Ower bound values are computed by emrespectlve bounds, Complement those of Table 2 in what
ploying Corollaries 4.2 and 5.2. The results in Table 2 follows.

1A Alloo —ina <1

<~ SNAT@QOO(M) <1

Finally, the systerm/ is converted into discrete-time



Table 2: Best Upper and Lower Bounds

Parameter Set [ #1 ] #2 ] #3 | #4 | #5 | #6
Smallest Upper Bound fo§ Narer o0 (M) (i.€., tightestSN prer (M) .836 | .835| 1.000| 1.106| 1.168| 1.237
Largest Lower Bound fof Narer, o (M) (i.€., tightestS N, n o (M) .836 | .802 | .950 | 1.048| 1.103| 1.164
Size of the Gap (i.eSNprer (M) — SNy N ... (M)) 0 |.033] .050 | .058 | .065 | .073
Satisfaction of the Robust Performance Objective (F&Varer o (M) < 1) || yes | yes | yes no no no

Table 3: Details of the Upper and Lower Bounds of ParametefSe

Upper Bounds folS Narep oo (M) I Lower Bounds forS Narer oo (M)
SNAi7Ld,OO(M) = S_NDQQP oo(M) S—NYNOO(M)
P([HM”Hl] Ie{1,2,3) ) a = {0,0} a={1,0} || Y={T}ic1 Y = {Y¥} ey
Je{1,2,3} Je{1,2} Je{1,2}
N={21} N={41} | N=A{1 1}
UB; = 1.027 UB2 = 1.006 | UB3 = 1.000 LBs =.950 LB, =.937 | LB, =.930

Although UB; is a bound initially developed fa¥/ A-  ulation in which the first panel presents a meaningful
loop systems subject to independent perturbations, it alsbenchmarky,,;s. signal, while the remaining ones dis-
delivers a valid upper bound in the presence of repeatecplay the system output,,,; for the six different parame-
perturbations a®\™? > A"P. The upper bound UB ter choices. The solid lines at15mV are thresholds for
is clearly the best one as it is the only one that guaran-the satisfaction of the performance objective. Note that
tees the required performance. The absolute improvethe system with parameter s&8 barely satisfies the ob-
ment of the upper bound value that imparts to the aug-jective while the setgt4 — 6 fails to do so, see Figs.5d
mented approach, as compared to its standard countetto 5g. Also observe that the DC gain poise decreases
part, is0.006 = UB, — UB3. The importance of thisre-  monotonically with respect to the requiréeeis ratio

sult is best elucidated by comparing it to the size of the a5 expected from the ideal circuit ana|ysi5§é’f‘2_

gap: 12.0% = gpi=rpe100%. A similar comparison

between UB and UB, yields54.0% = g3:=152100%. 7 Conclusion
This improvement is obtained with only a very small A pair of necessary and sufficient conditions for robust
increase in the overall computatlonal cost. Moreover, /.. -stability of systems withepeated|linear time-varying,
while only one augmentation pattera & {1,0}) al-  jnquceds, -norm bounded perturbations are presented
lows for a significant improvement of its associated up- i, this paper. The necessary condition complements the
per bound value, there exists other examples which re<gicient condition in that it allows to better estimate the
quire more complex choices far, see [4] for such an \5e of the structured norm associated with any given
example. _ _ _ robust /..-stability problem of the type investigated in
As indicated in§5, N, = 1 in all the three choices g paper. The quality of such estimation is determined
of the sequenc® required for lower bound computa- by the size of the gap between the corresponding upper
tion. As expected, the computational effort grows signif- 514 |ower bounds.
icantly with the required precision of the lower bound. The proposed theory is shown to be useful for de-
Nevertheless, although the absolute differenpe betwee@ign purposes as confirmed by an application in the field
LB; and LB, as well as between LBand LB, is only  of glectronic circuits. Moreover, the simulation results
0.013 = LB3 — LB and0.020 = LB3 — LBy, respec-  gpained using PSpice, which are comparable to experi-
tively, the corresponding relative improvement with re- yena) results, further support the conclusion reached.
spect to the size of the gap16.0% = fRi=yE2100% Future research is intended to compare the theory re-
and40.0% = gE=fpL100%, respectively. Consequently, cently presented in [5] to the one proposed in this paper
while lower bounds involvingrl/ may often be advan- in the context of the noisy electronic circuit application
tageous due to their cheaper computational cost, it is cerinvestigated irg6.
tainly worth spending additional computational effort on
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