DECISION’S PROBLEM WITH THE HELP OF IMPRECISE DATA ENVELOPMENT ANALYSIS   (IDEA)
D. V. DERPANIS and E. FOUNDAS
Department of Informatics

University of Piraeus

80, Karaoli and Dimitriou, 18534, Piraeus

GREECE

Abstract: - The standard data envelopment analysis (DEA) method requires that the values for all inputs and outputs be known exactly. When some inputs and outputs are unknown decision variables such as bounded data, original data, and ratio bounded data, the DEA model becomes a non-linear programming problem and is called imprecise DEA (IDEA). In this study we aim to develop further the IDEA by using a kind of punishment–penalty in the DMUs (Decision Making Units) which try on their own to weight the surges and the flows in order to elect in the major degree their efficiency. This is attempted in order to avoid the fact that the record of an efficient unit is arguable.
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1   Introduction 

Data envelopment analysis (DEA) [1] is a non–parametric method for evaluating the relative efficiency of decision–making units (DMU) on multiple inputs and outputs. The CCR (Cooper, Charnes, Rhodes) model assumes that data on the outputs and inputs are known exactly. However, this assumption may not be true. For example, some outputs and inputs may not be known as in forms of bounded data, original data, and ratio bounded data. If we incorporate such imprecise data information into the standard linear CCR model, the resulting DEA model is a non linear and non convex program, and is called imprecise DEA (IDEA). Note that IDEA is a deterministic programming problem, although it deals with data variations. IDEA is different from the stochastic or chance constrained DEA approach where imprecise data are estimated with probabilities (see e.g., Cooper et al., 1998) [2].
Cooper et al (1999) discuss how to deal with bounded data and weak ordinal data and provide a unified IDEA model when weight restrictions are also present. Kim et al (1999) discuss how to deal with bounded data (strong and weak) ordinal data, and ratio bounded data with an application to a set telephone offices. 
According to Despotis and Smirlis [3] who have  developed  an alternative approach for dealing with imprecise data (mixtures of exact, interval and ordinal data in the same setting), they have transformed the non-linear DEA  model to a linear programming equiva- lent by using a straightforward  formulation, completely different than that in IDEA. Contrarily to IDEA, their transformations on the variables were made on the basis of the original data set, without applying any scale transformations on the data. The original CCR DEA model with exact data, in its multiplier form, derived then straightforwardly as a special case of their model. The potential of their transformations enable them to uncover and thoroughly examine some new aspects of efficiency in an imprecise data setting, such as the variation of the efficiency scores of the units. On the basis of their particular transformations, new models were naturally introduced to estimate upper and lower bounds of the efficiency scores of the units, as well to classify and further discriminate the units in terms of the variability of their efficiency scores. Moreover they addressed and solved the problem of determining input thresholds that turn an inefficient unit to an efficient one, in an imprecise data setting. 

Today organizations want to maximize their outputs by simultaneously minimizing their inputs. So we try in this research to find the minimum of the maximum output values of DMUs’ intervals and also the maximum of the minimum input values in which the DMUs lose their efficiency.

The rest of the paper is organized as follows In Section 2, we present the existing DEA model for dealing with interval data. Then, on the basis of this model, we define upper and lower bound efficiencies for the units. In Section 3, we develop our new interval DEA model where we will try to examine the behaviour of DMUs from the point of efficiency by placing difficulty degrees in the freedom each DMU possesses to determine weights of entries and expenses, so that it is rendered efficient. Furthermore we proceed still further in formulating another post-DEA model, where there are three new categories of DMU’s efficiency. In Section 4 we provide a numerical example to illustrate the applications of interval IDEA models. Finally, conclusions are given in    Section 5.
2.1   DEA and IDEA models  

Assume n units, each using m inputs to produce s outputs. We denote by yrj the level of the rth output (r =1,…,s) from unit j (j=1,…,n) and by xij the level of the ith input (i=1,…, m) to the jth unit. Let j0 be the evaluated unit. In such a setting, the following CCR DEA model:

max   
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MODEL (1)
Unlike the original DEA model, we assume further that the levels of inputs and outputs are not known exactly; the true input-output data are known to lie within bounded intervals, i.e., xij (
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, with the upper and lower bounds of the intervals given as constants and assumed strictly positive. Let j0 be the evaluated unit. In such a setting, the CCR DEA model is non-linear (non-convex) as, apart from the original variables u1, . . . , ur, . . . , us and v1, . . . , vi, . . . , vm  (weights for outputs and inputs, respectively), the levels of inputs xij and outputs yrj are also variables whose exact values are to be estimated. According to Despotis and Smirlis we have
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With these transformations, the variables xij and yrj in model (1) are replaced by the new variables sij and trj, which locate the levels of inputs and outputs within the bounded intervals 
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 respectively. Model (1) still remains non-linear due to the products of variables visij for inputs and urtrj for outputs. We then replace these products with new va-riables qij=visij and prj=urtrj. According to these transformations the weighted sum of inputs (composite input) for unit j in model (1) takes the form          
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Where the new variables qij meet the conditions 
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 for every i and j. Similarly, the weighted sum of outputs (composite output) for unit j takes the form
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  for every r and j as explained above
With the above substitutions, model (1) is finally transformed into the following linear program:
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MODEL (2)

2.2   Classification
According to Despotis and Smirlis in an interval data setting, many units are likely to be proved efficient, as apart from the flexibility they have in choosing the weights, they are also free to adjust the levels of inputs and outputs in a favorable manner within the intervals. Thus further discrimination of the efficient units becomes more essential in an interval data setting. 

So, the models (2) provide for each unit a bounded interval 
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   according to follow models in which its possible efficiency scores lie, from the best to worst the case. 

max   
[image: image25.wmf]*

0

1

s

U

h

y

u

r

rj

j

r

=

å

=


st  
[image: image26.wmf]0

1

1

m

L

i

i

vx

ij

=

=

å


    
[image: image27.wmf]0

0

11

0

sm

U

L

ri

rj

rj

ri

y

uvx

==

-£

åå


  
[image: image28.wmf]11

0

sm

L

U

ri

rj

rj

ri

y

uvx

==

-£

åå

 
[image: image29.wmf]0

j

j

¹

 j=1,...,n;

     
[image: image30.wmf],

,,

ri

uvi

r

e

³

"


For the evaluated unit, the inputs are adjusted at the lower bounds and the outputs at the upper bounds of the intervals. Unfavorably for the other units, the inputs are contrarily adjusted at their upper bounds and the outputs at their lower bounds.                                         
max   
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For the evaluated unit the inputs are adjusted at their upper bounds and the outputs at their lower bounds. For the other units, the inputs are favorably adjusted at their lower bounds and the outputs at their upper bounds.

On the basis of the above efficiency score intervals, the units can be first classified in three subsets as follows:

  E++ = {J ε J/
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where J stands for the index set (1,…,n) of the units. The set E++ consists of the units that are efficient in any case (any combination of input/output levels). The set E+ consists of units that are efficient in a maximal sense, but there are input/output adjustments under which they cannot maintain their efficiency.

Finally, the set E- consists of the definitely inefficient units. Moreover, the range of possible efficiency scores can be used to rank further the units in the set E+.
3   Model Formulation
In this way each DMU attempts to maximize 
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. In our study we place a difficulty degree λ in proportion to the freedom degree each DMU possesses in the above choice. First we apply the following transformations to the variables xij and yrj:
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So for λ=0 we have 
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While for λ=1 we have 
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So the model 2 becomes as follows: 
    max
[image: image52.wmf]h

j

0

=
[image: image53.wmf]0000000

11

()()

ss

LULUL

r

rjrjrjrjrjrjrj

rr

ypyypyy

u

l

==

+---

åå

         
[image: image54.wmf]st()

0

000

1

[()]1

0

0000

1

m

U

LL

q

vxxx

i

ij

ijijij

i

m

UU

LL

q

vxvxxx

ii

ij

ijijijij

i

l

+-+

å

=

---=

å

=



[image: image55.wmf])]

0

0

(

0

0

0

[

1

)

0

0

(

0

0

1

)

0

0

(

0

1

)

0

0

(

0

0

1

x

L

ij

x

U

ij

q

ij

x

L

ij

v

i

x

U

ij

v

i

m

i

x

L

ij

x

U

ij

q

ij

x

L

ij

m

i

v

i

y

L

rj

y

U

rj

p

rj

s

r

y

L

rj

y

U

rj

p

rj

y

L

rj

s

r

u

r

-

-

-

å

=

+

-

+

å

=

£

-

å

=

-

-

+

å

=

l

l



[image: image56.wmf]0

)

(

1

)

(

1

£

-

+

å

=

-

-

+

å

=

x

L

ij

x

U

ij

q

ij

x

L

ij

m

i

v

i

y

L

rj

y

U

rj

p

rj

y

L

rj

s

r

u

r

   
[image: image57.wmf]j

o

j

n

j

¹

=

...

1



[image: image58.wmf]0

£

-

u

r

p

rj

r=1,..,s ;     j=1,…n

[image: image59.wmf]0

£

-

v

i

q

ij

     i=1,..,m ;     j=1,…n

[image: image60.wmf],

,

,

ri

uv

ri

e

"

³



[image: image61.wmf]j

i

r

q

ij

p

rj

,

,

0

,

0

"

³

³


[image: image62.wmf]01

l

££


MODEL (3)

Examining the definition we see that when λ receives the extreme price 0 then model (3) is transformed to model (2), that is absolute freedom is given to the DMU, while when λ receives the extreme price 1 model (3) is transformed to model (4).
max    
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MODEL (4)

So, we see that the last one is the worst case for a DMU, when the outputs receive their minimum price while the inputs receive their maximum price. Substantially giving the price λ=1 is like placing a burden to the effort of the DMU to render efficient (but it can render efficient)
On the basis of the above efficiency score efficiency, the units can be first classified in three subsets as follows:

  D++ ={J ε J/
[image: image73.wmf]h

j

  =1}

  D+={J ε J/
[image: image74.wmf]h

j

=[0..1] }

  D- ={ JεJ /
[image: image75.wmf]h

j

 <1}
where J stands for the index set (1,…,n) of the units. The set D++ consists of the units that are efficient in any degree of λ. The set D+ consists of units that are efficient in a small degree depending on λ. Finally, the set D- consists of the definitely inefficient units. 
4   Numerical example

Assume that eight units are evaluated based on their efficiency according to the  inputs /outputs of the following table, all with imprecise data and with no information given for the price allocation in the intervals. 

	                            INPUT                       OUTPUT

	DMU   J       X1J                X2J
            Y1J               Y2J                

	1
	16      21      0.30     0.50
	120   125      19       21

	2
	18      25      0.44     0.53
	122   130       20      21

	3
	20      27      0.41     0.61
	124   131       16      24

	4
	12      15      0.21     0.48
	138   144       21      22

	5
	10      17      0.1       0.7
	143   159       28      35

	6
	 4       30      0.16     0.35
	157   198       21      29

	7
	19      22      0,12     0.19
	158   181       21      25

	8
	14      15      0.06     0.09
	157   161       28      40


Table 1
We take DMU’s categories according to (Ε-    ,Ε+    Ε++  )
	
	INPUTS
	OUTPUTS
	
	
	

	DMU
	X1
	X2
	Y1
	Y2
	Efficiency interval
	Class

	1
	[16
	21]
	[0.30
	0.50]
	[120
	125]
	[19
	21]
	[0.177
	0.746]
	Ε-

	2
	[18
	25]
	[0.44
	0.53]
	[122
	130]
	[20
	21]
	[0.165
	0.693]
	Ε-

	3
	[20
	27]
	[0.41
	0.61]
	[124
	131]
	[16
	24]
	[0.148
	0.643]
	Ε-

	4
	[12
	15]
	[0.21
	0.48]
	[138
	144]
	[21
	22]
	[0.224
	1.000]
	Ε+

	5
	[10
	17]
	[0.10
	0.70]
	[143
	159]
	[28
	35]
	[0.227
	1.000]
	Ε+

	6
	[ 4
	30]
	[0.16
	0.35]
	[157
	198]
	[21
	29]
	[0.823
	1.000]
	Ε+

	7
	[19
	22]
	[0.12
	0.19]
	[158
	181]
	[21
	25]
	[0.445
	0.907]
	Ε-

	8
	[14
	15]
	[0.06
	0.09]
	[157
	161]
	[28
	40]
	[1.000
	1.000]
	Ε++


Table 2
We now take DMUs, apply difficulty degree λ and we have:

	λ
	DMU1
	DMU2
	DMU3
	DMU4
	DMU5
	DMU6
	DMU7
	DMU8

	0.0
	0,746
	0,693
	0,643
	1
	1
	1
	0,907
	1

	0.1
	0,720
	0,660
	0,600
	1
	1
	1
	0,880
	1

	0.2
	0,695
	0,630
	0,578
	1
	1
	1
	0,860
	1

	0.3
	0,671
	0,600
	0,557
	1
	1
	1
	0,835
	1

	0.4
	0,650
	0,580
	0,537
	1
	1
	1
	0,812
	1

	0.5
	0,630
	0,550
	0,518
	1
	1
	1
	0,790
	1

	0.6
	0,600
	0,538
	0,500
	0,970
	1
	1
	0,767
	1

	0.7
	0,590
	0,518
	0,480
	0,940
	1
	1
	0,746
	1

	0.8
	0,570
	0,500
	0,467
	0,920
	1
	1
	0,725
	1

	0.9
	0,550
	0,480
	0,450
	0,900
	0,94
	1
	0,705
	1

	1.0
	0,540
	0,466
	0,438
	0,870
	0,88
	1
	0,686
	1

	Class
	D-
	D-
	D-
	D+
	D+
	D++
	D-
	D++


Table 3
Based on the results of the two preceding tables, we observe that by using our approach the classification of DMU is the same as the one in table 2 except for the case of DMU6. This is justified for two main reasons. The first one is that the range of efficiency interval for the specific DMU is very short, and second that the upper bound of its efficiency interval is equal to 1. 
5   Conclusion

We developed in this paper an alternative approach for dealing with imprecise data in DEA. Firstly we wanted to restrict the freedom of DMUs   by using a kind of punishment –penalty in the DMUs which try on their own to weight the surges and the flows in order to elect in the major degree their efficiency. 
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