
An Improvement of Bitonic Sorting for Parallel Computing

AHMED SHAMSUL AREFIN1, MOHAMMED ABUL HASAN2

1Faculty of Science & IT, Daffodil International University, Dhaka 1207, BANGLADESH
2Department of Computer Science, Information Valley of IIT, Dhaka 1207, BANGLADESH

Abstract: - In this paper we would like to introduce an efficient variant of Bitonic sorting that can be used with sorting
large arrays in distributed computing environment. The problem of sorting a collection of values on a mesh-connected
distributed-memory computer using our sort algorithm is considered for the case where the number of values exceeds
the number of processors in the machine. In this setting the number of comparisons can be reduced asymptotically if the
processors have addressing autonomy (locally indirect addressing), and communication costs can be reduced by careful
placement of the data values.

Key-Words: Bitonic Sorting, SIMD, Hypercube, Distributed Computer, Parallel Algorithm.

1 Introduction
Many parallel sorting algorithms have been developed to
sort P values on a distributed memory machine with P
processors connected in an √P X √P mesh. The most
widely known of these algorithms are adaptations of
Batcher's Bitonic sort [1] or closely related algorithms
such as odd-even merge [1] to the mesh [2], [3], [4]. All
of these approaches perform O(log2P) parallel
comparisons and make these comparisons using the mesh
interconnections in a way that yields communication
costs proportional to O(√(P)).
 We are interested in the systematic adaptation of
algorithms to settings where the number of data elements
N is larger than P, and have chosen Batcher's Bitonic sort
for this study because it is relatively simple and well-
understood.
 To sort arrays that have more elements than there are
processors, a virtualization technique must be employed.
Automatic virtualization can be provided by compilation
from higher level languages such as the data-parallel
Fortran dialect.

2 Bitonic Sort Formulation
Bitonic sort of N=2n elements can be understood as a
relatively simple algorithm operating on data arranged in
an n-dimensional boolean hypercube A (an n-
dimensional array, where each axis has length two). An
index v ∈{0,1}n specifies a single element in the
hypercube. Our convention is that axes are numbered 1 to
n and the coordinates on each axis are placed from right
to left when forming an index. Figure 1 illustrates the
arrangement and indices of the values in a 3-dimensional
boolean hypercube holding 8 values. Here A[101] = 'f'.

Fig 1. Arrangement of values in 3D Hypercube

We identify values arranged in a hypercube with the
sequence of values obtained by arranging the values in
order of increasing index interpreted in base 2. For the
hypercube in Figure 1, this yields the sequence
[a,b,c,d,e,f,g,h]. The expression A[v ≈] for |v| ≤ n yields
the sequence (in order of increasing index) of elements
whose index is vw for some w∈{0,1}n–|v|. For the
hypercube in Figure 1, we have A[0 ≈] =
[a,b,c,d][5][6][7].
 The Bitonic sort algorithm is expressed on the boolean
hypercube as follows:

1. for i:= 1 to n do
2. for j := i downto 1 do
2.1 compare-exchange on axis j of A
 where (index(A) at axis i+1 is 1) do
 exchange on axis j of A

 To explain the algorithm we define some terms and
state the invariants. The Compare Exchange (CE)
operation on axis j compares, for every v∈{0,1}n–j and
w∈{0,1}j-1 the elements A[v0w] with A[v1w] and

exchanges the two values if the former is larger than the
latter. The proposition s⇑ holds if s is a monotonically
non-decreasing sequence, s⇓ holds if s is a monotonically
non-increasing sequence, and s⇔ holds if s is a Bitonic
sequence, i.e. s is a circular shift of uv where u⇑ and
v⇓. For sequences s and t the relation s ≤ t holds if every
value in s is less than or equal to every value in t.
 Consequently, a simple analysis of the algorithm
above confirms that it performs O(log2N) parallel
compare-exchange operations.
 To adapt the abstract Bitonic sort first, we have to
choose how to virtualize the algorithm to apply when
each processor holds multiple values in A. Second, since
the algorithm is formulated on a hypercube and we are
interested in implementing it on a machine with a mesh
topology, we have to embed the values on the hypercube
into the mesh. We consider first the virtualization
strategies.

3 Problem solution
We assume that we have P = 2m processors, and N = 2n
elements with m<n. We consider simplest virtualization
strategy is to reduce the n dimensional hypercube to an m
dimensional hypercube, each element of which is an n–m
dimensional hypercube. Figure 2 gives an example of the
decomposition. The idea is that the m-dimensional
hypercube can be embedded in the P processor mesh
while the n–m dimensional elements will reside within
each processor memory. We refer to this approach as
hypercube virtualization because it preserves the
hypercube structure of the original algorithm, although
we must alter the interpretation of the CE operation. Each
parallel CE operation on an axis in the m-dimensional
hypercube corresponds to N/P successive comparisons of
P/2 parallel pairs of corresponding components of
elements at each end of the axis. A parallel CE operation
on an axis contained within the elements consists of N/2P
successive comparisons of P parallel pairs of components
of elements. Since CE operations are performed most
frequently on lower numbered axes, the natural choice is
to place these axes within elements since fewer
sequential comparisons are involved in CE operations on
axes within elements.
 There are (log2 N) parallel CE operations in the
abstract algorithm and each CE operation involves
O(N/P) parallel comparisons, hence the total number of
parallel comparisons using P processors is O(N/Plog2 N).

Fig. 2. Hypercube Virtualization of 5-dimensional
hypercube into 3-dimensional cube of 2-dimensional

cube elements

 Figure 3 illustrates the data movement required in the
hypercube to transpose an element axis k (axis 2 in this
case) with a hypercube axis j (axis 5 in this case). In each
element there are N/2P values whose indices on axis j
and k differ. These values must be exchanged with N/2P
values in the element at the opposite side of axis j. Hence
a total of N/P values move; this is the same number as
are moved in bringing together the values for a CE
operation on a hypercube axis.

Fig 3. Data movement required for the transposition of a
hypercube axis(axis 5) with an element axis (axis 2).

4 Implementation
The final virtualization strategy is a variant of hypercube
virtualization in which the algorithm is transformed as
follows to always perform CE operations on a the first k
= n–m axes.

1. for i:= 1 to n do
2. for j := i downto 1 do
2.1. if j => k then

 transpose axis j and k of A
 Compare-Exchange(CE) on axis k

 All the virtualizations have reduced the hypercube to
the leading m axes, so that we are considering the
embedding of an m-dimensional hypercube in P = 2m
processors arranged in a 2m/2 ⋅ 2m/2 mesh. We assume m

is even; it is simple to extend the following to the case
where m is odd. For simplicity we will renumber the
hypercube axes 1...m .
 A row-major embedding of a boolean hypercube maps
each successive dimension to processors successive
powers of two apart along the first row, wrapping across
rows when the stride exceeds the number of processors
per row on the mesh.
 The idea is that a function M[j] records which original
hypercube axis currently occupies axis j. The function M
changes whenever a transposition is performed. To
implement the transpose between axis k and j, we find the
axis M-1[j] currently occupied by j and perform the
transpose with axis k

let M be the identity function on 1...n
1. for i:= 1 to n do
2. for j := i downto 1 do
2.1. if j≥k then

 transpose axis M-1[j] and axis k
 of A
 M[k],M[M-1[j]] := j, M[k]
 CE on axis k
 if j<k then
 CE on axis j

 For a given initial embedding of the hypercube, the
total communication distance for the transformed
algorithm is the same as that obtained if the embedding
were fixed. The advantage lies in the fact that only one
transpose operation is required per CE instead of two,
hence half the values are moved. In the transpose and
hypercube CE operation the axes of the hypercube
elements are mapped into memory identically at each
processor, hence these operations need not use any
indirect addressing. Since the N/P element CE can be
carried out as N/P single element communication and
compare steps, no extra space is needed for these
implementations.

5 Analysis
For the initial one-time intra-processor sort in sequence
virtualization we used a merge-exchange sort [1] [8],
which is an O(n log2n) sort. Although it is possible to
write an asymptotically better merge sort as suggested in
the previous section, the constants are worse for
achievable values of N/P with the current per-processor
memory size. A radix sort becomes competitive at the
largest values of N/P, but all such sorts require extra
space. The pre-sort is the only operation in sequence
virtualization that need be non-linear in N/P (each CE in
sequence virtualization is a linear-time merge) and we
find that only at the very largest feasible inputs can we
notice this asymptotic effect, suggesting that the
comparisons at the pre-sort stage are dominated by the

comparisons in the Bitonic stage. The merge-exchange
sort is oblivious the comparison pattern is independent of
the comparison outcomes and hence need not use indirect
addressing, yet unlike Bitonic sort works for any
sequence size, not just those with length a power of 2 [9].
 It is useful to analyze performance in relation to the
virtualization ratio VPR = N/P. For a given size of
machine and choice of embedding the communication
costs are linear in VPR and independent of the
virtualization technique. The comparison costs grow
nonlinearly with increasing VPR, and are independent of
the embedding. In sequence virtualization the only non-
linear component of comparison cost is in the initial sort,
while in hypercube virtualization the cost grows
proportional to log2N [10][11].

Virtual
Hypercube VPR HRM rowmaj

SRM

Sequence
balaxis
SBA1

balaxis
SBA2 balaxis

FLA
Xnet

XNET
2 19.8 21.4 21.4 30.3 6.8 5
8 19.5 20.7 19.5 25.9 5.8 4.7

32 19.4 19.6 18 23.7 5.9 4.9
128 20.4 19.7 18.1 23.3 6.5 5.4
512 22.1 19.7 18.2 23.5 7.1 5.9

2048 24 - - - 7.8 6.5

Table 1. Implementation of Timing in
milliseconds/VPR

0

5

10

15

20

25

30

35

2 8 32 128 512 2048

Elements per Processor

Ti
m

e
in

 m
s/

VP
R HRM

SRM
SBA1
SBA2
FLA
XNET

Figure 4. Performance of implementations

 Since both virtualization approaches incur comparison
costs from the inter-processor CE operations, the effect
of comparison costs becomes pronounced when N is
significantly larger than P. The sort time of the
implementations described on a 4096 processor SIMD
sorting 32-bit integer data values are shown in displayed

graphically in Figure 4. The times are in
milliseconds/VPR. We consider, HRM = Hypercube row
major, SRM = Sequence Row Major, SBA= Sequence
Balaxis, FLA = Virtual Hyper Cube, Balaxis, XNet =
Virtual Hyper cube Xnet.
 The cost of Bitonic sort under each choice of
virtualization and embedding is given by the expression
Ti,j (N,P) = (ai,j Ci + bijTj) • Li where aij and bij are
implementation-specific constants:

Virtualization i Comparisions C Loading I.j
sequence log N/P + log2 P 2N/P
Hypercube (log2N) 2N/P

Var.-hypercube (log2N) N/P
Table 2. Cost Analysis with Virtualization.

Embedding j unit shift steps Tj
Row-major (log 16√P) √P – 3/2 log P – 4

balanced-axis 7√P – 2 log P – 7
Xnet 5√P – log P – 5

Table 3. Cost Analysis with Embedding.

6. Conclusion
Our sort algorithm is suitable for distributed memory
implementation precisely because the structure of the
hypercube guarantees that each value is involved in
exactly one CE operation at a time. It is suitable for a
mesh-connected distributed computer because the
regularity of the CE operations on the hypercube can be
preserved in the embedding into lower-dimensional
meshes.

References:
[1]. D.E. Knuth, "The Art of Computer Programming,

Searching and Sorting", Vol-3 Addison-Wesley,
1973.

[2]. M. Kumar and D.S. Hirschberg, "An efficient
implementation of Batcher's odd-even merge
algorithm and its application in parallel sorting
schemes", IEEE Trans. on Computers, Vol.C-32,
Mar. 1983.

[3]. D. Nassimi and S. Sahni, "Bitonic sort on a mesh-
connected parallel computer", IEEE Trans. on
Computers, Vol.C-27, no.1, pp. 2-7, Jan. 1979.

[4]. C.D. Thompson and H.T.Kung, "Sorting on a
mesh-connected parallel computer", CACM,
Vol.20, Apr. 1977, pp. 263-271.

[5]. K.E. Batcher, "Sorting networks and their
applications", Spring Joint Computer Conf.,
AFIPS Proc., Vol.32, 1968, pp. 307-314.

[6]. K.E. Batcher, "Design of a Massively Parallel
Processor", IEEE Trans. on Computers, C-29(9),
1981, pp. 836-840.

[7]. Baudet and D. Stevenson, "Optimal sorting
algorithms for parallel computers", IEEE Trans.
on Computers, Vol.C-27, no.1, Jan. 1978, pp. 84-
87.

[8]. E.W. Dijkstra, "A heuristic explanation of
Batcher's Baffler", EWD953 U.Texas Austin.

[9]. Jan F. Prins, “Efficient Bitonic Sorting of Large
Arrays on the MasPar MP-1”, Journal,
Department of Computer Science, University
of North Carolina, TR91-041.

[10]. G. Bilardi and A. Nicolau, “Adaptive Bitonic
sorting: an optimal parallel algorithm for
shared-memory machines”, Vol. 18 , April
1989, Issue 2.

[11]. K. Brockmann and R. Wanka, “Efficient
Oblivious Parallel Sorting on the MasPar MP-
1”, Proceedings of the 30th Hawaii
International Conference on System Sciences:
Software Technology and Architecture, Vol. 1,
1997, p. 200.

