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Abstract: - In this paper we would like to introduce an efficient variant of Bitonic sorting that can be used with sorting 
large arrays in distributed computing environment. The problem of sorting a collection of values on a mesh-connected 
distributed-memory computer using our sort algorithm is considered for the case where the number of values exceeds 
the number of processors in the machine. In this setting the number of comparisons can be reduced asymptotically if the 
processors have addressing autonomy (locally indirect addressing), and communication costs can be reduced by careful 
placement of the data values. 
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1 Introduction 
Many parallel sorting algorithms have been developed to 
sort P values on a distributed memory machine with P 
processors connected in an √P X √P mesh. The most 
widely known of these algorithms are adaptations of 
Batcher's Bitonic sort [1] or closely related algorithms 
such as odd-even merge [1] to the mesh [2], [3], [4]. All 
of these approaches perform O(log2P) parallel 
comparisons and make these comparisons using the mesh 
interconnections in a way that yields communication 
costs proportional to O(√(P)). 
     We are interested in the systematic adaptation of 
algorithms to settings where the number of data elements 
N is larger than P, and have chosen Batcher's Bitonic sort 
for this study because it is relatively simple and well-
understood. 
     To sort arrays that have more elements than there are 
processors, a virtualization technique must be employed. 
Automatic virtualization can be provided by compilation 
from higher level languages such as the data-parallel 
Fortran dialect. 
 
2 Bitonic Sort Formulation 
Bitonic sort of N=2n elements can be understood as a 
relatively simple algorithm operating on data arranged in 
an n-dimensional boolean hypercube A (an n-
dimensional array, where each axis has length two). An 
index v ∈{0,1}n specifies a single element in the 
hypercube. Our convention is that axes are numbered 1 to 
n and the coordinates on each axis are placed from right 
to left when forming an index. Figure 1 illustrates the 
arrangement and indices of the values in a 3-dimensional 
boolean hypercube holding 8 values. Here A[101] = 'f'.  
 
 

 
 

Fig 1. Arrangement of values in 3D Hypercube 
 
We identify values arranged in a hypercube with the 
sequence of values obtained by arranging the values in 
order of increasing index interpreted in base 2. For the 
hypercube in Figure 1, this yields the sequence 
[a,b,c,d,e,f,g,h]. The expression A[v ≈] for |v| ≤ n yields 
the sequence (in order of increasing index) of elements 
whose index is vw for some w∈{0,1}n–|v|. For the 
hypercube in Figure 1, we have A[0 ≈] = 
[a,b,c,d][5][6][7]. 
     The Bitonic sort algorithm is expressed on the boolean 
hypercube as follows: 
 
1. for i:= 1 to n do  
2.    for j := i downto 1 do  
2.1         compare-exchange on axis j of A 
               where (index(A) at axis i+1 is 1) do  
                   exchange on axis j of A 
 
     To explain the algorithm we define some terms and 
state the invariants. The Compare Exchange (CE) 
operation on axis j compares, for every v∈{0,1}n–j and 
w∈{0,1}j-1 the elements A[v0w] with A[v1w] and 



exchanges the two values if the former is larger than the 
latter. The proposition s⇑  holds if s is a monotonically 
non-decreasing sequence, s⇓ holds if s is a monotonically 
non-increasing sequence, and s⇔ holds if s is a Bitonic 
sequence, i.e. s is a circular shift of uv where u⇑ and 
v⇓. For sequences s and t the relation s ≤  t holds if every 
value in s is less than or equal to every value in t. 
     Consequently, a simple analysis of the algorithm 
above confirms that it performs O(log2N) parallel 
compare-exchange operations. 
     To adapt the abstract Bitonic sort first, we have to 
choose how to virtualize the algorithm to apply when 
each processor holds multiple values in A. Second, since 
the algorithm is formulated on a hypercube and we are 
interested in implementing it on a machine with a mesh 
topology, we have to embed the values on the hypercube 
into the mesh. We consider first the virtualization 
strategies. 
 
 
3 Problem solution  
We assume that we have P = 2m processors, and N = 2n 
elements with m<n. We consider simplest virtualization 
strategy is to reduce the n dimensional hypercube to an m 
dimensional hypercube, each element of which is an n–m 
dimensional hypercube. Figure 2 gives an example of the 
decomposition. The idea is that the m-dimensional 
hypercube can be embedded in the P processor mesh 
while the n–m dimensional elements will reside within 
each processor memory. We refer to this approach as 
hypercube virtualization because it preserves the 
hypercube structure of the original algorithm, although 
we must alter the interpretation of the CE operation. Each 
parallel CE operation on an axis in the m-dimensional 
hypercube corresponds to N/P successive comparisons of 
P/2 parallel pairs of corresponding components of 
elements at each end of the axis. A parallel CE operation 
on an axis contained within the elements consists of N/2P 
successive comparisons of P parallel pairs of components 
of elements. Since CE operations are performed most 
frequently on lower numbered axes, the natural choice is 
to place these axes within elements since fewer 
sequential comparisons are involved in CE operations on 
axes within elements. 
     There are (log2 N) parallel CE operations in the 
abstract algorithm and each CE operation involves 
O(N/P) parallel comparisons, hence the total number of 
parallel comparisons using P processors is O(N/Plog2 N). 
 
 

 
 

Fig. 2. Hypercube Virtualization of 5-dimensional 
hypercube into 3-dimensional cube of 2-dimensional 

cube elements 
 
     Figure 3 illustrates the data movement required in the 
hypercube to transpose an element axis k (axis 2 in this 
case) with a hypercube axis j (axis 5 in this case). In each 
element there are N/2P values whose indices on axis j 
and k differ. These values must be exchanged with N/2P 
values in the element at the opposite side of axis j. Hence 
a total of N/P values move; this is the same number as 
are moved in bringing together the values for a CE 
operation on a hypercube axis. 
 

 
 

Fig 3. Data movement required for the transposition of a 
hypercube axis(axis 5) with an element axis (axis 2). 

 
4 Implementation 
The final virtualization strategy is a variant of hypercube 
virtualization in which the algorithm is transformed as 
follows to always perform CE operations on a the first k 
= n–m axes. 
 
1. for i:= 1 to n do 
2. for j := i downto 1 do 
2.1.                if j => k then 

        transpose axis j and k of A 
        Compare-Exchange(CE) on axis k 

 
     All the virtualizations have reduced the hypercube to 
the leading m axes, so that  we are considering the 
embedding of an m-dimensional hypercube in P = 2m  
processors arranged in a 2m/2 ⋅ 2m/2 mesh. We assume m 



is even; it is simple to extend the following to the case 
where m is odd. For simplicity we will renumber the 
hypercube axes 1...m . 
     A row-major embedding of a boolean hypercube maps 
each successive dimension to processors successive 
powers of two apart along the first row, wrapping across 
rows when the stride exceeds the number of processors 
per row on the mesh.  
     The idea is that a function M[j] records which original 
hypercube axis currently occupies axis j. The function M 
changes whenever a transposition is performed. To 
implement the transpose between axis k and j, we find the 
axis M-1[j] currently occupied by j and perform the 
transpose with axis k 
 
let M be the identity function on 1...n 
1. for i:= 1 to n do 
2.    for j := i downto 1 do 
2.1.       if j≥k then 

    transpose axis M-1[j] and axis k 
    of  A 
    M[k],M[M-1[j]] := j, M[k] 
    CE on axis k 
 if j<k then 
     CE on axis j 

 
     For a given initial embedding of the hypercube, the 
total communication distance for the transformed 
algorithm is the same as that obtained if the embedding 
were fixed. The advantage lies in the fact that only one 
transpose operation is required per CE instead of two, 
hence half the values are moved. In the transpose and 
hypercube CE operation the axes of the hypercube 
elements are mapped into memory identically at each 
processor, hence these operations need not use any 
indirect addressing. Since the N/P element CE can be 
carried out as N/P single element communication and 
compare steps, no extra space is needed for these 
implementations. 
 
5 Analysis 
For the initial one-time intra-processor sort in sequence 
virtualization we used a merge-exchange sort [1] [8], 
which is an O(n log2n) sort. Although it is possible to 
write an asymptotically better merge sort as suggested in 
the previous section, the constants are worse for 
achievable values of N/P with the current per-processor 
memory size. A radix sort becomes competitive at the 
largest values of N/P, but all such sorts require extra 
space. The pre-sort is the only operation in sequence 
virtualization that need be non-linear in N/P (each CE in 
sequence virtualization is a linear-time merge) and we 
find that only at the very largest feasible inputs can we 
notice this asymptotic effect, suggesting that the 
comparisons at the pre-sort stage are dominated by the 

comparisons in the Bitonic stage. The merge-exchange 
sort is oblivious the comparison pattern is independent of 
the comparison outcomes and hence need not use indirect 
addressing, yet unlike Bitonic sort works for any 
sequence size, not just those with length a power of 2 [9]. 
     It is useful to analyze performance in relation to the 
virtualization ratio VPR = N/P. For a given size of 
machine and choice of embedding the communication 
costs are linear in VPR and independent of the 
virtualization technique. The comparison costs grow 
nonlinearly with increasing VPR, and are independent of 
the embedding. In sequence virtualization the only non-
linear component of comparison cost is in the initial sort, 
while in hypercube virtualization the cost grows 
proportional to log2N [10][11].  
 

Virtual 
Hypercube VPR HRM rowmaj

SRM 

Sequence 
balaxis 
SBA1 

balaxis 
SBA2 balaxis 

FLA 
Xnet 

XNET
2 19.8 21.4 21.4 30.3 6.8 5 
8 19.5 20.7 19.5 25.9 5.8 4.7 

32 19.4 19.6 18 23.7 5.9 4.9 
128 20.4 19.7 18.1 23.3 6.5 5.4 
512 22.1 19.7 18.2 23.5 7.1 5.9 

2048 24 - - - 7.8 6.5 

Table 1. Implementation of Timing in 
milliseconds/VPR 
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Figure 4. Performance of implementations 

 
     Since both virtualization approaches incur comparison 
costs from the inter-processor CE operations, the effect 
of comparison costs becomes pronounced when N is 
significantly larger than P. The sort time of the 
implementations described on a 4096 processor SIMD 
sorting 32-bit integer data values are shown in displayed 



graphically in Figure 4. The times are in 
milliseconds/VPR. We consider, HRM = Hypercube row 
major, SRM = Sequence Row Major, SBA= Sequence 
Balaxis, FLA = Virtual Hyper Cube, Balaxis, XNet = 
Virtual Hyper cube Xnet. 
     The cost of Bitonic sort under each choice of 
virtualization and embedding is given by the expression 
Ti,j (N,P) = (ai,j Ci + bijTj ) • Li where aij and bij are 
implementation-specific constants: 
 

Virtualization i Comparisions C Loading I.j 
sequence log N/P + log2 P 2N/P 
Hypercube (log2N) 2N/P 

Var.-hypercube (log2N) N/P 
Table 2. Cost Analysis with Virtualization. 

 
Embedding j unit shift steps Tj 
Row-major (log 16√P) √P – 3/2 log P – 4 

balanced-axis 7√P – 2 log P – 7 
Xnet 5√P – log P – 5 

Table 3. Cost Analysis with Embedding. 
 

6. Conclusion 
Our sort algorithm is suitable for distributed memory 
implementation precisely because the structure of the 
hypercube guarantees that each value is involved in 
exactly one CE operation at a time. It is suitable for a 
mesh-connected distributed computer because the 
regularity of the CE operations on the hypercube can be 
preserved in the embedding into lower-dimensional 
meshes. 
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