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Abstract: - Fuzzy methods provide a versatile means in the processing of digitized medical images. Fuzzy thresholding is considered to have certain advantages over crisp thresholding since it allows for better blending of different image segments and facilitates segment dependent weighted application of consequent processing methods. A novel methodology is proposed in the context of this paper. It exploits the morphology of the histogram of digital intra-operative cholangiography images in order to determine the fuzzy membership functions associated with various image segments. Guidelines are provided in order to determine the number of different segments as well as the threshold values between the segments. The method models the gray-level histogram of the images as a mixture of Radial Basis Functions (RBFs), which are consequently used to yield the fuzzy membership functions as kernel regression estimates. The proposed method compares favorably against standard fuzzy thresholding methods that minimize a measure of fuzziness of the histogram of an image like Shannon’s entropy and Yager’s measure. It allows for histogram compensation of non-uniformly exposed medical images acquired by mobile equipment so that useful diagnostic information may be derived from them.   
Key-Words: - Radial Basis Functions (RBFs), Artificial Neural Networks (ANN), Fuzzy Image Segmentation, Optimization, Medical Image Processing.

1 
Introduction

Fuzzy image processing expands upon a diversity of research fields such as fuzzy set theory, digital signal processing, mathematical morphology, soft computing and others [1],[2]. It is the collection of all approaches that understand, represent and process images, their segments and extracted features as fuzzy sets. The representation and processing methods depend upon the selected fuzzy technique and upon the problem to be solved. Fuzzy image processing has three main stages: image fuzzification, modification of membership values, and, if necessary, image defuzzification. The fuzzification and defuzzification are steps that implement fuzzy techniques during image processing. The main power of fuzzy image processing lies in the modification of the membership values of the pixels of an image. A variety of methods have being developed during the last years, namely fuzzy clustering algorithms, fuzzy rule-based processing, fuzzy integration, fuzzy image enhancement and segment dependent processing [1],[2],[3],[4],[5],[6] etc.

1.1
Image Segmentation 
Image segmentation techniques are employed to partition the space of an image into meaningful regions of interest in the context of robot vision, image enhancement, automatic recognition of machine printed or handwritten texts, shape recognition etc. Image segmentation methods include methods based on histogram thresholding [7],[8], as well as methods based on pixel classification in a feature space. The latter methods include seeded region growing [9],[10], deformable model region growing [11], mixture models of individual component densities - usually Gaussians - and a variety of statistical and morphological approaches based on such mathematical fields as evidence theory [12] and others. Several optimization and clustering techniques are used in conjunction with pixel classification methods like the Expectation Maximization (EM) algorithm [13], minimal spanning tree (MST) clustering, unsupervised learning (neural networks) and evolutionary models (region competition) etc. 

1.2
Fuzzy Methods in Image Segmentation   
Fuzzy set theory is employed during the initialization phase of a process of image segmentation in conjunction with conventional algorithms like the Expectation Maximization algorithm [14]. Alternatively, it is incorporated into the optimization phase in the determination of an appropriate threshold value [15]. A fuzzy membership function – denoted as k(.) – is associated with the k-th region of an image, I(m,n). The different regions are denoted as Rk,     k=1 … K. The following relationship holds for every pixel of the image,
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The values of the fuzzy membership functions vary within the interval [0, 1]. They obtain non-zero values, which are less than one, at the boundary regions.

The histogram of the image - denoted as h(.) - is fuzzified into K intervals, which cover the dynamic range of the pixel values. Each of the K regions of the image is associated with a fuzzified range of values at its boundaries [Tk-1, Tk). The overall histogram of the image is found as a superposition of the partial histograms - denoted as hk(.) - of the segments of the image as,  
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2 Radial Basis Function (RBF) Mixture Models 
Mixture models are mixtures of probability distributions, in particular Gaussian distributions. They have been used extensively as models in a wide variety of applications where the data of interest arise from two or more populations mixed together in varying proportions [16]. Gaussian distributions are Radial Basis Functions (RBFs), i.e. they possess radial symmetry within their support. The population of interest is the 1-D gray-level histogram of the image denoted as h(.). Each segment of the image yields a distinctive pixel distribution - denoted as hk(.) - over the gray-level values - denoted as gk(.) - that belong to the dynamic range of the image segment. Thus, the overall histogram is approximated as a superposition of K RBFs - denoted as k  - in the following way,  
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where wk, tk and k stand accordingly for the weight, the center and the spread of the k-th Gaussian. 


A mixture model defined according to Eq. 3 may be visualized as a RBF network capable of undertaking a learning process [17]. 

3  
A RBF Based Adaptive Algorithm For Fuzzy Thresholding        
The membership functions associated with the image segments are given as kernel regression estimates according to the following relationship,
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The parameters of the RBFs are updated using a gradient-descent procedure that represents a generalization of the LMS algorithm and minimizes the instantaneous values of the cost function, 
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. Error function e(.) is defined over the dynamic range of the pixel values of the image as, 
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where h(g) is the histogram of the image at gray-level g. The dynamic range of the pixel values of the image equals Lg. Three different updating parameters are used to train the RBFs according to the aforementioned discussion: i- the updating parameter w is used for the weights of the RBFs,  ii- the updating parameter t is used for the centers of the RBFs, and, iii- the updating parameter  is used for the spreads of the RBFs. The adaptation formulas for the k-th RBF read, 
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where k(.) is the k-th RBF and k’(.) is its first derivative.    


The proposed method determines automatically the number of the fuzzified segments of the image by iterative application of the updating relationships (Eqs. 6) for successive numbers of RBFs. The steps of the algorithm are the following:  

· STEP 0 : 
Start with two RBFs (K=2). 

· STEP 1 : 
Initialize the centers tk of the K RBFs taking into account the morphology of the histogram of the image. Assign to them initial values that lie on opposite sides of deep valleys of the histogram trying to cover uniformly the dynamic range of the pixel values. Use the same initial values for RBF weights and RBF spreads respectively, i.e. w1=…=wK  and  1=…=K.     

· STEP 2 : 
Apply the learning process (Eqs. 12) successively for the weights, the centers and the spreads of the selected K RBFs until the cost function associated with iteration step t satisfies 
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.  
· STEP 3 : 
If the optimal cost function for K RBFs does not differ significantly from the optimal cost function for K-1 RBFs, i.e.  
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, terminate the procedure assuming that the fuzzified segments of the image are K,  otherwise increase the number of RBFs by one (K=K+1)  and go to STEP 1.  

Parameters 1 and 2 assume predefined small values. The block diagram of the proposed fuzzification method is outlined in Fig. 1.
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Fig. 1 : Block diagram of the proposed algorithm

4  
Experimental Results         
The medical imagery data are imported from a medical database that has been developed in the Second Department of Surgery of the University Hospital of Alexandroupolis, Greece [18]. Fifteen (15) X-ray intra-operative cholangiography images scanned from original (not digitally preprocessed images) are used.
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Fig. 2 : Original Image
4.1
Acquisition Techniques 
The following platform (connected to a 100 Mbps Fast Hub Ethernet LAN) is employed:

· an IBM Server 205 (Pentium 4 – 2.4 Ghz, 512 Mbytes RAM, 80 Gbyte hard disk), containing the entire database,

· a Heidelberg Lynotype CPS Saphir/Opal Scanner, and

· a PC (Pentium 4 – 1.8 GHz, 256 Mbyte RAM, 40 Gbyte hard disk) with a 64 Mbyte graphics card and a 21’’ display.

Intra-operative cholangiography images are used to apply the proposed method of fuzzy thresholding. Intra-operative cholangiography is often used to investigate the anatomy of the biliary tree and to detect stones or other pathology within the Common Bile Duct (CBD) [19]. The images are acquired during surgery by mobile X-ray equipment. The technique has several technical limitations, resulting in poor and non-informative X-ray images, since the exposure conditions are often not well calculated as the patient is under anaesthesia and the capabilities of the mobile X-ray equipment are limited. In most cases, the result is overexposed images containing information that is difficult to interpret due to the limited range of the pixel values in image segments containing valuable diagnostic information. The X-ray films used in our study are scanned with a Heidelberg Lynotype CPS Saphir/Opal scanner and several versions of the acquired intra-operative images are obtained in multiple resolutions in order to achieve the best image according surgeons’ directions.


One of the fifteen (15) original images used in this study is presented in Fig. 2. Its dimensions are 545 by 385 pixels and its dynamic range spans from 0 to 255. It shows a case of CBD injury (transection) with contrast injected in the proximal end of CBD. The intra-operative cholangiography shows the anatomy of the extra and intrahepatic biliary tree with abrupt cessation of contrast material into the duodenum. There is an overexposed region of the image due to capturing techniques. Valuable information for a medical diagnosis is contained within that region. There is one major valley (local minimum) in the gray-level histogram of the image (Fig. 3). It corresponds to a pixel value of 217 and defines the boundary between the image segments that are important in the diagnosis.  
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 Fig. 3 : Histogram of The Original Image
4.2
Fuzzy Thresholding Using RBFs  

The proposed method for fuzzified thresholding presented in Section 3 and outlined in the block diagram of Fig. 1 is applied to Fig. 2. Two, three and four RBFs are used successively in order to determine the membership functions assigned to image segments according to Eq. 4. Segmentation results are then compared against standard fuzzy thresholding methods that minimize Shannon’s entropy and Yager’s measure in order to determine the optimal S-functions for segmentation into two regions.  


The weights, the centers and the spreads of the RBFs are determined adaptively at each iteration using the updating parameters presented in Table 1 for all cases. The selection of the updating parameters is critical since the convergence of the algorithm depends on the selected values. 

	Updating Parameters (
	Value

	Linear weights - wi
	w=5x10-3

	Centers of RBFs - ti
	t=1x10-6

	Spreads - (1/i)2
	=4x10-16


Table 1: Updating Parameters

4.3
Optimization Using Two RBFs  

Two RBFs are used as the first approximation of the histogram of the image, which is depicted in Fig. 3. The initial values of the RBF parameters are presented in Table 2. The centers of the two RBFs are chosen so that they reside on opposite sides of the deep valley of the histogram (pixel value 217.2). They are placed respectively at equal distances from the minimum and the maximum pixel value of the histogram of the image.    
The initial error over the dynamic range of the histogram is illustrated with the dashed line in      Fig. 4a for the case of two RBFs. The learning process stops should the ratio 
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 be smaller than 1 along the lines of the proposed procedure. The predefined constant 1 equals 5x10-4. The algorithm terminates after 615 iterations. The optimal cost function 
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 equals 1.5x107. The trained RBFs (light solid lines) as well as the approximation error (dashed line) after the termination of the algorithm are illustrated in Fig. 4b. The histogram of the image (dark solid line) is given for comparison purposes in Fig. 4b along with the trained RBFs and approximation error after termination of the algorithm. The values of the RBF parameters after termination of the algorithm are presented in Table 2.   

	RBF 

Parameters
	RBF1
	RBF2

	Linear weights
	w1(0)
6,000
	w1(615)
5,311
	w2(0)
6,000
	w2(615)
15,003

	Centers
	t1(0)
35
	t1(615)
166,5
	t2(0)
220
	t2(615)
264

	Spreads
	1(0)
20
	1(615)
63,5
	2(0)
20
	2(615)
26,5


Table 2: RBF Parameters for two RBFs (Initial and Optimized Values)
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Fig. 4a : Initialization Using Two RBFs
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Fig. 4b : Optimal Approximation of The Histogram of Fig. 2 (Two RBFs)

4.4
Optimization Using More Than Two RBFs  

Three RBFs are used successively as the second approximation of the histogram of the image. The initial values of their parameters are presented in Table 3. The centers of the RBFs are placed at equal distances over the dynamic range of the pixel values of the image. Two centers are placed below the local minimum of 217 and one center is placed above it. Linear weights and spreads are assigned to the same initial values as in the previous case.


The initial error over the dynamic range of the histogram is illustrated with the dashed line in     Fig. 5a for the case of three RBFs. The algorithm terminates after 400 iterations. The optimal cost function 
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 equals 1.3x107. The trained RBFs (light solid lines) as well as the approximation error (dashed line) after the termination of the algorithm are illustrated in Fig. 5b. The values of the RBF parameters after termination of the algorithm are presented in Table 3. 

	RBF 

Parameters
	RBF1
	RBF2
	RBF3

	Linear 

weights 
	w1(0)

6,000
	w1(400)

2,695
	w2(0)

6,000
	w2(400)

5,263
	w3(0)

6,000
	w3(400)

13,798

	Centers 
	t1(0)

25
	t1(400)

-12.5
	t2(0)

127.5
	t2(400)

168.5
	t3(0)

230
	t3(400)

260

	Spreads
	1(0)

20
	1(400)

19.5
	2(0)

20
	2(400)

67
	3(0)

20
	3(400)

22.5


Table 3. RBF Parameters for Three RBFs (Initial and Optimized Values)
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Fig. 5a : Initialization Using Three RBFs 
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Fig. 5b : Optimal Approximation of The Histogram of Fig. 2 (Three RBFs)
5   Discussion 

Finally, four RBFs are used as the approximation of the histogram of the image depicted in Fig. 2. The centers of the RBFs are placed at equal distances over the dynamic range of the pixel values of the image. Predefined parameter 2 is chosen to be equal to 0.15 for all cases (two, three and four RBFs). This suggests that the optimal number of RBFs is three (3). Nevertheless only two image segments, namely regions R2 and R3, contain valuable information for diagnostic purposes. The evolution of the cost function is presented in Fig. 6 for all cases. The optimal thresholds are (T1, T2)=(27.5, 229.5) for the case of three RBFs.
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Fig. 6 : Square Error vs. Iteration Step (Two, Three and Four RBFs)

The proposed method is compared against conventional algorithms used to fuzzify the histogram of an image [20],[21]. Two S-functions are used to obtain the fuzzified image segments by minimizing both Shannon’s entropy [20] and Yager’s measure [21],[22]. The bandwidths of the two membership functions remain constant and equal to 20. The cross-over point of the two membership functions is chosen so that the fuzziness measure shall be optimal. Its optimal value (illustrated in Fig. 7) is around 209 for all examined cases. 
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Fig. 7 : Shannon’s Entropy vs. Threshold (solid line), Yager’s Measure Using Hamming Metric vs. Threshold (dashed line) and Yager’s Measure Using Euclidean Metric vs. Threshold (dashed-dotted line)

Fig. 8 illustrates the membership functions when S-functions are used to obtain the optimal thresholds as well as when two and three RBFs are used. The fuzzified image segments for three RBFs are illustrated in Fig. 9. The bandwidth of the range of the fuzzy pixel values is broader should RBFs be used for the thresholding. This is indicative of the capability of the proposed method to determine adaptively the optimal bandwidth of the membership functions according to the shape of the deep valley minimum of the histogram. No assumptions regarding the quadratic shape of the histogram or its symmetry at the deep valley minimum are made. 
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Fig. 8 : Membership Functions (Obtained From   S-Functions and Two & Three RBFs)


Similar results are obtained for the rest of the examined cases. Fuzzy thresholds lie nearby the deep valley minima of the histogram of the images (within an interval of sixteen gray levels at most). The deducted image segments are compact without holes (as in the case of crisp multilevel thresholding) and exhibit smooth boundaries. Nevertheless the initialization of the algorithm proved to be critical. 
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Figure 9a. Three RBFs (Region 1) 
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Figure 9b. Three RBFs (Region 2)
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Figure 9c. Three RBFs (Region 3) 
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