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Abstract: - In this paper we present a graph based formalism for the analysis and the behavioral envisioning of software 

based systems. We first try to identify and solve the main limitations of dynamic analysis approaches. Follow some 

results of a qualitative abstraction tool and some simple application examples. We then introduce the concept of a 

system qualitative graph, the role of graph homomorphisms for modeling a software, and more generally a system, as a 

continuous phase transition map operating on an abstract data space. We finish with the presentation of the underlying 

mathematical framework and some properties of graph homomorphism invariants. 
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1   Introduction 
The software engineering community has developed 

several methods, tools and concepts for dealing with the 

increasing complexity and size of software based 

systems. System reliability, maintainability and 

portability, constitute the main challenges for this 

engineering field. Artificial Intelligence (AI) concepts 

and ideas have been successfully applied in this field: 

automatic programming from examples, conceptual 

models for software design, automatic program 

understanding of programmer's intent, case based 

reasoning for software maintenance and reusability, etc 

[1], [2]. Qualitative reasoning (QR) [3] has proved to be 

an AI field with many successful contributions to system 

analysis, (physical and artificial systems). However, with 

some exceptions in model based reasoning [4], [5], [6] 

QR has not been widely applied to software and system 

engineering.  

  The difficulty of applying QR concepts to software 

engineering is due to the fact that the algorithmic 

behavior cannot be described as a physical system 

governed by a simple set of differential equations and 

some system parameters. Data types are heterogeneous 

and are not always ordinal: strings, records, lattices, 

vectors, trees, etc. In the same time, software tends 

nowadays to be integrated with hardware (hybrid 

systems). A more systemic approach is needed for 

addressing software based systems. 

The most widespread software system analysis models 

are essentially based on formal static methods [7]. They 

have their own advantages and limitations [8] due to the 

inherent complexity of the software programming 

process. However those approaches cannot be 

considered as qualitative since they are too analytic 

(even if a certain level of data abstraction is operated) 

and do not propose a formalism that envisions software 

behavior as a whole. A software (or more generally a 

system) formalism (formalism) must be qualitative and, 

in our understanding, must respect the following 

specifications: 

• It must propose a right level of a dynamic behavioral 

abstraction applicable to a wide range of hybrid 

systems,  

• It must be able to express data type heterogeneity and 

system compositionality (outputs of a software 

module can be used by another module), 

• For ordinal inputs, when present, this formalism must 

be able to envision software-system behavior when 

those inputs change,  

• This formalism must contain the concept of 

continuity (even for non ordinal inputs) that is 

pervasive to any QR reasoning domain. 

The paper is organized as follows. We first expose a 

motivating example of a simple piece of software source 

code and its corresponding software qualitative graph. 

This graph summarizes the global behavior of the 

software system in response of its inputs continuous 

change. The construction of such graphs is completely 

automated by a tool and can be easily generalized for 

any system. However, we shall concentrate our analysis 

here to software based systems. Qualitative graphs must 

respect some constraints that are independent of the 

internal structure of the system they envision. Those 

constraints are uniquely and strictly related to the metric 

properties of the input space and not only to its 

dimension. In other terms, qualitative graphs are 

homomorphic to the equivalence classes of the input 

space. This simple observation will constitute the 

grounds of a qualitative formalism based on graph 

homomorphisms (for oriented and not oriented graphs) 



that provide an elegant formal (and visual) framework 

for a qualitative envisioning of a system. Some basic 

properties of graph homomorphisms and their 

connection with our qualitative framework are given in 

the last section. 

 

2   Motivation 
Let's take a very simple piece of software source code 

written in the C programming language. For illustrative 

purposes the source code is given here, but we must 

stress the fact that we do not need to know the internal 

structure of a system for building its qualitative graph. 

All what we need to know is the inputs and their domain. 

 
int prem,sec; 

if (a >= b) prem = 1; 

else prem = 2; 

if (a >= 48) sec = 1; 

else sec = 2; 

if ((prem == 1)&&(sec == 1)) return 0; 

if ((prem == 1)&&(sec == 2)) return 1; 

 if ((prem == 2)&&(sec == 1)) return 2; 

if ((prem == 2)&&(sec == 2)) return 3; 

 

In our case we have two integer inputs a and b, which 

vary, say, from -100 to +100 (Fig. 1a). We suppose in 

the same time that our software, when compiled and 

executed, produces an observable result (given by the 

return statement). An automatic abstraction tool, 

developed by our team [9], determines heuristically 

input values that respect input domains and are situated 

at the frontiers of the state space regions. A state region 

is the set of inputs that yield the same output value. After 

several executions the following two dimension map 

with four distinct regions is built (Fig. 1a). The variable 

a increases horizontally, and variable b vertically. The 

point with coordinates, say, (20, 80) belongs to the 

region numbered 3, since the execution with inputs a = 

20 and b = 80 produces the integer 3 as a return result. 

One can observe that the four regions are connected (and 

even convex) and separated by linear equations 

(automatically detected). This is due to the fact that the 

conditions appearing in the source code are linear 

functions of the inputs. It is often the case to have 

connected and even convex regions when we handle 

numeric parameters in software programming. 

Let's now replace each region by a graph vertex. A 

vertex x will be connected with a vertex y with an arc 

labeled a if there is a point belonging to the region 

represented by x from where an "infinitesimal increase" 

(in our case all input variables are integers so the 

minimal change is 1) of the input variable a may lead the 

program to reach the region y (since our variables are 

bounded we could draw an additional vertex, 

representing an infinity, an error or an out of 

specifications state). We obtain a qualitative graph 

illustrated in Fig. 1b. This graph contains the same 

relevant information than the map but in a more compact 

form that does not depend on the map dimension. 

 
Fig. 1a 

 

Fig. 1b 

 

How this graph can be read? We can see for instance that 

from region 1 we cannot join directly the region 2: we 

must first visit region 3 by increasing both inputs. 

Sometimes we do not represent input labels on the arcs: 

in a non-oriented qualitative (Fig. 3) graph only the 

neighborhood information is represented. All graphs are 

reflexive (but we do not visualize loops on the vertices) 

since an infinitesimal change permits in most cases to 

stay in the same region. Regions with one isolated point 

(expressing sometimes an equality condition in the 

source code) do not admit loops and so constitute an 

exception but we don't wish to enter to those 

considerations in this presentation. 

Visualizing by means of a graph the proximity of the 

different software functional areas provides a sort of 

software phase space, which permits a global 

understanding of the software behavior (software phase 

transitions). In some real time critical applications it is 

also important to know how the implemented software 

will react to some continuous modifications of its 

environmental inputs. Expressing a sort of topological 

representation of input variations is not only relevant for 

applications where inputs vary continuously. Functional 

frontiers and transitions are of paramount importance in 

software testing. One of the most common cause of 

programming errors [10] is a bad programming or 

misunderstanding of limit behavior.  
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In our example, a common programming error would 

consist for instance to write the first condition (a<=b), 

instead of (a>=b) or to write a logical or instead of a 

logical and in a conditional statement. This sort of 

defects causes the deformation and the shifting of the 

surfaces separating the functional regions. Limit testing 

[8] consists in stressing the software with input values 

that are close or on to the separating surfaces.  

In our qualitative terminology, limit testing means that 

we shall try to increase or decrease input data in order to 

visit all the vertices of our qualitative graph. Fig. 2 

illustrates another automatic analysis result of a simple 

telecommunication protocol controller (with three 

control inputs). 

 

 3   A qualitative formalism based on 

graph homomorphisms 
It is often the case in computer science, and especially in 

real time applications, to have an input domain with a 

natural metric relation. For instance, when a software 

processes many scalar inputs, the input graph can be 

considered as a sort of multidimensional grid. In some 

applications, inputs have a poset or lattice structure with 

a closeness relation immediately greater than. In other 

cases, before testing, software engineers partition the 

input domain into separate classes, choose a 

representative test vector in each class, and execute the 

software system. Here too one can say that some classes 

are close when they share some common attributes. The 

structure of the classes depends on the problem we are 

solving. A proximity relation can equally be extended to 

structures like letters, words, trees, since one often 

wishes to see what happens when he “smoothly” 

changes an input (i.e. changing a letter to another 

alphabetically close letter, a small tree is appended to 

another tree, etc.).  Here,  “smoothly” means that one 

performs the minimal change (given by the 

specification) to an input. Finite state machines as well 

as lattices can equally be considered as oriented graphs 

with a natural proximity relation. All those observations 

allow one to consider the input domain as a graph, the 

input graph, with specific, domain dependent 

interconnections and its natural distance. In order to 

illustrate our purposes let's now suppose that, before 

executing our software, we have found five kinds of 

input values. In Fig. 3, the input graph G is transformed 

in an output qualitative graph H by means of an 

algorithm f. The edge (1, 2) means that we can 

"smoothly" change inputs to jump from class 1 to class 

2. For instance, we could decide that the class 2, groups 

all input values that are negative but not both zero, class 

4 could group values which are positive but not both 

zero, class 5 could group the point (0, 0), etc. This is a 

sort partition of the bidimensional plane. Of course, G 

could represent a partition of any input space of any 

dimension. The edge (x, y) means that in an execution of 

f (taking an input from input class 1) we get a result 

belonging to the class x. 

 

Fig. 2 

 

After what, we change "continuously" the input from the 

class 1 to the class 2 and, in a second execution, we 

obtain an output belonging to the class y. After several 

executions (or physical observations of the system) we 

build the output graph H. All the executions are 

independent and are not (cannot be) exhaustive. The 

software system here has no memory. The software map 

f, transforms an input graph G to a qualitative one. H 

contains the equivalence classes of the input graph G. 

Two vertices x and y of G are equivalent when f(x)= 

f(y). This natural equivalence relation means that the 

output qualitative graph H is isomorphic to the quotient 

graph G/f which is homomorphic to the input graph G by 
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the homomorphism naturally induced by the equivalence 

relation. In other words, the qualitative H is built (by 

observation) in such a manner, that becomes 

homomorphic to G and the software f (or, more 

generally, a system) is a graph homomorphism. Graph 

homomorphisms allow one to endow with the concept of 

continuity an inherently discontinuous field like software 

programming.  

 

Fig. 3 

 

The output qualitative graph H envisions the global 

dynamic behavior of the algorithm structure and, since it 

is homomorphic to the input domain, it integrates the 

topological input constraints independently on the way 

the algorithm has been implemented. More formally, the 

qualitative graph must preserve homomorphism 

invariants that are present in the input graph: they allow 

one to use non homomorphism properties: if a graph 

does not respect an invariant, some vertices, labels or 

edges are lacking, or are misplaced. For example, in 

Fig. 3, did one observe all the possible changes of 

behavior (all the edges of H)? Can one be sure that he 

will never have a transition from x to w, or y to z? 

Suppose, for instance, that x is the normal initial state of 

the system and that w is the error state. Can one be sure 

that before visiting the error state he will always visit the 

warning states y or z? As we shall see in the next 

paragraph, graph invariants show that H cannot be 

homomorphic to G since it does not respect an important 

homomorphism invariant (maximal hole number). One 

can formally conclude that the software, whatever is its 

implementation, and because of the topology of its input 

classes, must and will exhibit, in a future operational 

phase, a forbidden transition without visiting the 

warning states.  

Suppose now that a system admits two integer inputs, a 

and b, and exhibits four possible classes of output 

behavior. Are all qualitative graphs with four vertices 

admissible? Can one observe the qualitative graph of 

Fig. 4? Without delving into further details 

(homomorphism invariants for oriented graphs are 

discussed in [11]) we can say, for that example, that the 

region 3 must be necessarily connected with a label a to 

the region 2. In fact, the qualitative graph H is 

homomorphic to a bi-dimensional oriented grid which 

has the isotropy property: two vertices which are 

connected by a path expression of the form a
n
.b

m
 must be 

also be connected by a path expression b
m
.a

n
. Isotropy is 

an homomorphism invariant which is not the case for the 

regions 1 and 2. So a label a is lacking between the 

regions 3 and 2, since this constitutes the only way to 

connect correctly the regions 1 and 2. We conclude that 

the tester must design test cases in order to exhibit the 

specific output transition after an increase (with a 

sequence of independent executions) of the input a.  

 

Fig. 4 

 

As we said before an input graph G could abstract a 

partition of the bidimensional plane. Since all computer 

values are discrete, the real plane is a huge grid where 

values are connected when there is no an intermediate 

value between two decimal points (the grid vertices). We 

conclude that even input graph G must be homomorphic 

to that original grid. Homomorphism composition can be 

further used in the case where the output graph H is an 

input graph of another system, say s, providing a new 

qualitative graph J. We see in that manner that graph 

homomorphisms provide an elegant and coherent 

framework for data abstraction and system composition. 

The next paragraph gives a more formal flavor to those 

observations with some basic properties of 

homomorphisms of non-oriented graphs. 

 

4   Mathematical framework 
We adopt conventional notations for graphs G(X, U) 

with X the set of vertices and U the set of edges. We 

note x~y the adjacency of the two vertices. Graphs are 

connected and reflexive but we do not visualize loops. 

We note dG(x, y) the natural distance in a connected 

graph G that is, the length of the shortest path, linking x 

to y. We note In as the path of length n. Grids noted 

Gm,n,p… are cartesian products of paths. 

An homomorphism [12], is a map h:G→H preserving 

adjacency: i.e. x~y implies h(x)~h(y). Our graphs being 

reflexive, this definition is equivalent to a non expanding 

map: dG(x, y) ≥ dH(h(x),h(y)). Homomorphisms will 

always be onto. When G = H we say that we have an 

endomorphism. Idempotent endomorphisms are also 

called retractions. So retractions are homomorphisms 

which leave invariant a subgraph G’, called a retract of 

G. Graph homomorphisms, as well as retractions 

constitute a very active area of research in graph theory 

[13], [14]. 
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A contraction is an onto homomorphism h:G→H where 

the inverse image of every vertex of H is a connected 

subgraph of G. We note G/h the quotient graph induced 

by the kernel of h. A partition is elementary when all the 

equivalence classes contain only one element, except one 

class that contains exactly two adjacent vertices. More 

particularly, a contraction is elementary when it induces 

an elementary partition. 
 

 

Fig. 5 

 

An elementary contraction can be viewed as gluing two 

adjacent vertices following their common edge. Fig. 5 

illustrates an elementary contraction h and its kernel 

G/h. 

An homomorphism invariant is a non negative real 

valued function ∂ verifying: ∂(G)≥∂(h(G)) for any 

homomorphism h. The number of vertices, edges as well 

as the diameter are trivial invariants. It is easy to observe 

that any contraction is the commutative composition of 

elementary contractions. That means that if a property is 

an invariant for any elementary contraction it is also, by 

induction, a contraction invariant. An immediate 

property of that observation is that contractions preserve 

planarity. For a connected subgraph G' of G, we define 

discon(G') as the number of connected components 

(possibly a single vertex) that we obtain when we 

remove G'. We call it the disconnecting capacity of G'. It 

is easy to prove that for any contraction h we have: 

discon(G')≥discon(h(G')). This property yields an 

interesting corollary (that can easily generalized for 

higher dimensions): any bi-dimensional grid of an odd 

size m (i.e. Gm,m), with m≥3 cannot be contracted to any 

path Im+1. In Fig. 6 we illustrate this: the grid G2,2 cannot 

be contracted to the path I3. To have an idea of the 

general demonstration note, in Fig. 6, that the central 

vertex c has a disconnecting capacity of 1 since its 

removal does not disconnect the graph. At the same time 

it is at a maximal distance of 2 from all the other 

vertices, so it cannot be homomorphically mapped to the 

two outer vertices of I3. So, if a contraction exists, its 

image h(c) is necessarily a vertex in the middle of I3, 

which disconnects I3, thus increasing its disconnecting 

capacity, which is impossible.  

The maximal disconnecting capacity of a graph, mdc(G), 

is the maximum discon(G') that we can obtain from a 

subgraph G'. Since discon(G') does not increase, mdc(G) 

is a contraction invariant. In Fig. 7, we have mdc(G)=2 

and mdc(H)=3. 

A cycle contains a chord when two not subsequent 

vertices of the cycle are connected. Chordless cycles that 

are also retracts are called holes. For instance, in Fig. 3, 

the cycle [1, 2, 4, 3] is a chordless cycle since opposite 

vertices (like 1 and 4) are not adjacent, but is not a hole, 

since there is no possible retraction on this cycle. Let 

hole(G) be the greatest length of a hole in G. For 

instance, in Fig. 3, hole(G) = 3 and hole(H) = 4. The 

only holes of grids are the cycles of length 4. So the hole 

number of any grid, of any dimension, is 4. It can be 

proved by induction that elementary contractions do not 

increase the hole number, so hole(G) is also a 

contraction invariant.  

 

Fig. 6 

 

Fig. 7 

 

As we said in the previous sections, if we assume the 

connectivity of functional regions, contraction invariants 

can be used to constraint qualitative graphs. For 

instance, in Fig. 6, the non homomorphism property 

based on the disconnecting capacity invariant says that if 

we observe a software with two integer inputs 

partitioned in 9 classes of a bidimensional plane 

(combination of negatives and positive coordinates) it is 

impossible to observe a completely linear behavior. The 

mdc(G) invariant, in Fig. 7, permits to say that when 

inputs of a software system follow a cyclic finite state 

machine with a central Error state, then the observed 

output region transitions cannot have a star-like 

topology. A transition edge is missing. The hole number 

permits to conclude that any system with any number of 

scalar inputs cannot exhibit a 5-cycle behavior without, 

at least, a missing transition among the states of the 

cycle. 
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Contraction invariants can also be used to deduce some 

important properties of the input graph. Let's take an 

interesting example. Suppose one has a system (like a 

robot) that he controls with two integer variables 

forming a planar input graph. Suppose now that this 

robot exhibits a good behavior (this is a vertex of the 

output qualitative graph H). One wants to be sure that 

small perturbations on input variables (the graph G) will 

not suddenly change robot's behavior. That is, we want 

to be sure that whatever would be the output behavior, 

there is the possibility of maintaining the robot in the 

same configuration while smoothly changing its control 

variables (a sort of controllability). That necessitates all 

the control surfaces of our system to be connected since 

we wish to visit all the points of a region without 

jumping into another. In other words there must be a 

contraction between G and H. Suppose now that, during 

the testing of our robot, we observe a graph H containing 

a 5-cycle hole, or, a graph with so many transitions that 

make it no planar. In both cases, we can conclude that 

there is no possibility of contraction. Thus, inverse 

images are not connected and the system is not 

controllable. 

 

5   Conclusion 
Qualitative reasoning has been applied for the testing of 

protocol oriented software components and proved to be 

very beneficial. Software designing, programming, 

testing and debugging are very complex and error prone 

human activities. Conventional software engineering 

methods and tools are very powerful but lack of a global 

qualitative formalism to help the engineer to understand 

the system behavior. A formalism based on graph 

homomorphisms has been presented. Software is viewed 

as a sort of continuous map transformation between two 

abstract data spaces likewise a phase transition system. 

The qualitative graph envisions the global of the 

software system and respects some constraints that are 

independent of its internal structure. Those constraints, 

called invariants, express topological properties of graph 

homomorphisms. They can be used to infer the possible 

shapes of the qualitative graph. An automatic abstraction 

tool has been presented. Many questions may arise: can 

we abstract all common input data structures with a 

proximity relation? Is it possible to express more 

quantitative information in the qualitative graph labels? 

How do we handle state machines, time and memory? 

How this formalism can be extended to physical and/or 

artificial systems? Do endomorphisms or retractions 

express some specific classes of software behavior? Can 

we classify software applications according to the 

properties of their endomorphisms (that is, the properties 

of the generated monoid)? How the map composition of 

homomorphisms can express system integration? Is it 

possible to express some software errors as the 

composition of the correct map with an error map that 

one could study in more details? All those questions are 

open but we think that the main contribution of our 

formalism resides in the fact that it proposes a bridge 

between qualitative system analysis and a very seminal 

area of applied mathematics.  
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