
Software System Analysis with Graph Homomorphisms

C. V. KARAPOULIOS, G. K. ADAM, S. N. XANTHAKIS

Computer Science and Communications Department

Technological Institute of Larissa

Larissa Greece

Abstract: - In this paper we present a graph based formalism for the analysis and the behavioral envisioning of software

based systems. We first try to identify and solve the main limitations of dynamic analysis approaches. Follow some

results of a qualitative abstraction tool and some simple application examples. We then introduce the concept of a

system qualitative graph, the role of graph homomorphisms for modeling a software, and more generally a system, as a

continuous phase transition map operating on an abstract data space. We finish with the presentation of the underlying

mathematical framework and some properties of graph homomorphism invariants.

Key-Words: - software engineering, qualitative reasoning, software testing, dynamic system analysis, graph

homomorphisms, software phase spaces.

1 Introduction
The software engineering community has developed

several methods, tools and concepts for dealing with the

increasing complexity and size of software based

systems. System reliability, maintainability and

portability, constitute the main challenges for this

engineering field. Artificial Intelligence (AI) concepts

and ideas have been successfully applied in this field:

automatic programming from examples, conceptual

models for software design, automatic program

understanding of programmer's intent, case based

reasoning for software maintenance and reusability, etc

[1], [2]. Qualitative reasoning (QR) [3] has proved to be

an AI field with many successful contributions to system

analysis, (physical and artificial systems). However, with

some exceptions in model based reasoning [4], [5], [6]

QR has not been widely applied to software and system

engineering.

 The difficulty of applying QR concepts to software

engineering is due to the fact that the algorithmic

behavior cannot be described as a physical system

governed by a simple set of differential equations and

some system parameters. Data types are heterogeneous

and are not always ordinal: strings, records, lattices,

vectors, trees, etc. In the same time, software tends

nowadays to be integrated with hardware (hybrid

systems). A more systemic approach is needed for

addressing software based systems.

The most widespread software system analysis models

are essentially based on formal static methods [7]. They

have their own advantages and limitations [8] due to the

inherent complexity of the software programming

process. However those approaches cannot be

considered as qualitative since they are too analytic

(even if a certain level of data abstraction is operated)

and do not propose a formalism that envisions software

behavior as a whole. A software (or more generally a

system) formalism (formalism) must be qualitative and,

in our understanding, must respect the following

specifications:

• It must propose a right level of a dynamic behavioral

abstraction applicable to a wide range of hybrid

systems,

• It must be able to express data type heterogeneity and

system compositionality (outputs of a software

module can be used by another module),

• For ordinal inputs, when present, this formalism must

be able to envision software-system behavior when

those inputs change,

• This formalism must contain the concept of

continuity (even for non ordinal inputs) that is

pervasive to any QR reasoning domain.

The paper is organized as follows. We first expose a

motivating example of a simple piece of software source

code and its corresponding software qualitative graph.

This graph summarizes the global behavior of the

software system in response of its inputs continuous

change. The construction of such graphs is completely

automated by a tool and can be easily generalized for

any system. However, we shall concentrate our analysis

here to software based systems. Qualitative graphs must

respect some constraints that are independent of the

internal structure of the system they envision. Those

constraints are uniquely and strictly related to the metric

properties of the input space and not only to its

dimension. In other terms, qualitative graphs are

homomorphic to the equivalence classes of the input

space. This simple observation will constitute the

grounds of a qualitative formalism based on graph

homomorphisms (for oriented and not oriented graphs)

that provide an elegant formal (and visual) framework

for a qualitative envisioning of a system. Some basic

properties of graph homomorphisms and their

connection with our qualitative framework are given in

the last section.

2 Motivation
Let's take a very simple piece of software source code

written in the C programming language. For illustrative

purposes the source code is given here, but we must

stress the fact that we do not need to know the internal

structure of a system for building its qualitative graph.

All what we need to know is the inputs and their domain.

int prem,sec;

if (a >= b) prem = 1;

else prem = 2;

if (a >= 48) sec = 1;

else sec = 2;

if ((prem == 1)&&(sec == 1)) return 0;

if ((prem == 1)&&(sec == 2)) return 1;

 if ((prem == 2)&&(sec == 1)) return 2;

if ((prem == 2)&&(sec == 2)) return 3;

In our case we have two integer inputs a and b, which

vary, say, from -100 to +100 (Fig. 1a). We suppose in

the same time that our software, when compiled and

executed, produces an observable result (given by the

return statement). An automatic abstraction tool,

developed by our team [9], determines heuristically

input values that respect input domains and are situated

at the frontiers of the state space regions. A state region

is the set of inputs that yield the same output value. After

several executions the following two dimension map

with four distinct regions is built (Fig. 1a). The variable

a increases horizontally, and variable b vertically. The

point with coordinates, say, (20, 80) belongs to the

region numbered 3, since the execution with inputs a =

20 and b = 80 produces the integer 3 as a return result.

One can observe that the four regions are connected (and

even convex) and separated by linear equations

(automatically detected). This is due to the fact that the

conditions appearing in the source code are linear

functions of the inputs. It is often the case to have

connected and even convex regions when we handle

numeric parameters in software programming.

Let's now replace each region by a graph vertex. A

vertex x will be connected with a vertex y with an arc

labeled a if there is a point belonging to the region

represented by x from where an "infinitesimal increase"

(in our case all input variables are integers so the

minimal change is 1) of the input variable a may lead the

program to reach the region y (since our variables are

bounded we could draw an additional vertex,

representing an infinity, an error or an out of

specifications state). We obtain a qualitative graph

illustrated in Fig. 1b. This graph contains the same

relevant information than the map but in a more compact

form that does not depend on the map dimension.

Fig. 1a

Fig. 1b

How this graph can be read? We can see for instance that

from region 1 we cannot join directly the region 2: we

must first visit region 3 by increasing both inputs.

Sometimes we do not represent input labels on the arcs:

in a non-oriented qualitative (Fig. 3) graph only the

neighborhood information is represented. All graphs are

reflexive (but we do not visualize loops on the vertices)

since an infinitesimal change permits in most cases to

stay in the same region. Regions with one isolated point

(expressing sometimes an equality condition in the

source code) do not admit loops and so constitute an

exception but we don't wish to enter to those

considerations in this presentation.

Visualizing by means of a graph the proximity of the

different software functional areas provides a sort of

software phase space, which permits a global

understanding of the software behavior (software phase

transitions). In some real time critical applications it is

also important to know how the implemented software

will react to some continuous modifications of its

environmental inputs. Expressing a sort of topological

representation of input variations is not only relevant for

applications where inputs vary continuously. Functional

frontiers and transitions are of paramount importance in

software testing. One of the most common cause of

programming errors [10] is a bad programming or

misunderstanding of limit behavior.

3

2

1

0

b a

1 0

2 3

b

a

a

a a

In our example, a common programming error would

consist for instance to write the first condition (a<=b),

instead of (a>=b) or to write a logical or instead of a

logical and in a conditional statement. This sort of

defects causes the deformation and the shifting of the

surfaces separating the functional regions. Limit testing

[8] consists in stressing the software with input values

that are close or on to the separating surfaces.

In our qualitative terminology, limit testing means that

we shall try to increase or decrease input data in order to

visit all the vertices of our qualitative graph. Fig. 2

illustrates another automatic analysis result of a simple

telecommunication protocol controller (with three

control inputs).

 3 A qualitative formalism based on

graph homomorphisms
It is often the case in computer science, and especially in

real time applications, to have an input domain with a

natural metric relation. For instance, when a software

processes many scalar inputs, the input graph can be

considered as a sort of multidimensional grid. In some

applications, inputs have a poset or lattice structure with

a closeness relation immediately greater than. In other

cases, before testing, software engineers partition the

input domain into separate classes, choose a

representative test vector in each class, and execute the

software system. Here too one can say that some classes

are close when they share some common attributes. The

structure of the classes depends on the problem we are

solving. A proximity relation can equally be extended to

structures like letters, words, trees, since one often

wishes to see what happens when he “smoothly”

changes an input (i.e. changing a letter to another

alphabetically close letter, a small tree is appended to

another tree, etc.). Here, “smoothly” means that one

performs the minimal change (given by the

specification) to an input. Finite state machines as well

as lattices can equally be considered as oriented graphs

with a natural proximity relation. All those observations

allow one to consider the input domain as a graph, the

input graph, with specific, domain dependent

interconnections and its natural distance. In order to

illustrate our purposes let's now suppose that, before

executing our software, we have found five kinds of

input values. In Fig. 3, the input graph G is transformed

in an output qualitative graph H by means of an

algorithm f. The edge (1, 2) means that we can

"smoothly" change inputs to jump from class 1 to class

2. For instance, we could decide that the class 2, groups

all input values that are negative but not both zero, class

4 could group values which are positive but not both

zero, class 5 could group the point (0, 0), etc. This is a

sort partition of the bidimensional plane. Of course, G

could represent a partition of any input space of any

dimension. The edge (x, y) means that in an execution of

f (taking an input from input class 1) we get a result

belonging to the class x.

Fig. 2

After what, we change "continuously" the input from the

class 1 to the class 2 and, in a second execution, we

obtain an output belonging to the class y. After several

executions (or physical observations of the system) we

build the output graph H. All the executions are

independent and are not (cannot be) exhaustive. The

software system here has no memory. The software map

f, transforms an input graph G to a qualitative one. H

contains the equivalence classes of the input graph G.

Two vertices x and y of G are equivalent when f(x)=

f(y). This natural equivalence relation means that the

output qualitative graph H is isomorphic to the quotient

graph G/f which is homomorphic to the input graph G by

Sortie 4

Sortie 3

Sortie 1

Sortie 5

Sortie 2

the homomorphism naturally induced by the equivalence

relation. In other words, the qualitative H is built (by

observation) in such a manner, that becomes

homomorphic to G and the software f (or, more

generally, a system) is a graph homomorphism. Graph

homomorphisms allow one to endow with the concept of

continuity an inherently discontinuous field like software

programming.

Fig. 3

The output qualitative graph H envisions the global

dynamic behavior of the algorithm structure and, since it

is homomorphic to the input domain, it integrates the

topological input constraints independently on the way

the algorithm has been implemented. More formally, the

qualitative graph must preserve homomorphism

invariants that are present in the input graph: they allow

one to use non homomorphism properties: if a graph

does not respect an invariant, some vertices, labels or

edges are lacking, or are misplaced. For example, in

Fig. 3, did one observe all the possible changes of

behavior (all the edges of H)? Can one be sure that he

will never have a transition from x to w, or y to z?

Suppose, for instance, that x is the normal initial state of

the system and that w is the error state. Can one be sure

that before visiting the error state he will always visit the

warning states y or z? As we shall see in the next

paragraph, graph invariants show that H cannot be

homomorphic to G since it does not respect an important

homomorphism invariant (maximal hole number). One

can formally conclude that the software, whatever is its

implementation, and because of the topology of its input

classes, must and will exhibit, in a future operational

phase, a forbidden transition without visiting the

warning states.

Suppose now that a system admits two integer inputs, a

and b, and exhibits four possible classes of output

behavior. Are all qualitative graphs with four vertices

admissible? Can one observe the qualitative graph of

Fig. 4? Without delving into further details

(homomorphism invariants for oriented graphs are

discussed in [11]) we can say, for that example, that the

region 3 must be necessarily connected with a label a to

the region 2. In fact, the qualitative graph H is

homomorphic to a bi-dimensional oriented grid which

has the isotropy property: two vertices which are

connected by a path expression of the form a
n
.b

m
 must be

also be connected by a path expression b
m
.a

n
. Isotropy is

an homomorphism invariant which is not the case for the

regions 1 and 2. So a label a is lacking between the

regions 3 and 2, since this constitutes the only way to

connect correctly the regions 1 and 2. We conclude that

the tester must design test cases in order to exhibit the

specific output transition after an increase (with a

sequence of independent executions) of the input a.

Fig. 4

As we said before an input graph G could abstract a

partition of the bidimensional plane. Since all computer

values are discrete, the real plane is a huge grid where

values are connected when there is no an intermediate

value between two decimal points (the grid vertices). We

conclude that even input graph G must be homomorphic

to that original grid. Homomorphism composition can be

further used in the case where the output graph H is an

input graph of another system, say s, providing a new

qualitative graph J. We see in that manner that graph

homomorphisms provide an elegant and coherent

framework for data abstraction and system composition.

The next paragraph gives a more formal flavor to those

observations with some basic properties of

homomorphisms of non-oriented graphs.

4 Mathematical framework
We adopt conventional notations for graphs G(X, U)

with X the set of vertices and U the set of edges. We

note x~y the adjacency of the two vertices. Graphs are

connected and reflexive but we do not visualize loops.

We note dG(x, y) the natural distance in a connected

graph G that is, the length of the shortest path, linking x

to y. We note In as the path of length n. Grids noted

Gm,n,p… are cartesian products of paths.

An homomorphism [12], is a map h:G→H preserving

adjacency: i.e. x~y implies h(x)~h(y). Our graphs being

reflexive, this definition is equivalent to a non expanding

map: dG(x, y) ≥ dH(h(x),h(y)). Homomorphisms will

always be onto. When G = H we say that we have an

endomorphism. Idempotent endomorphisms are also

called retractions. So retractions are homomorphisms

which leave invariant a subgraph G’, called a retract of

G. Graph homomorphisms, as well as retractions

constitute a very active area of research in graph theory

[13], [14].

1 0

2 3

b b

a

b

1

2

3

4

5

G

f

x

y

z

w

H

A contraction is an onto homomorphism h:G→H where

the inverse image of every vertex of H is a connected

subgraph of G. We note G/h the quotient graph induced

by the kernel of h. A partition is elementary when all the

equivalence classes contain only one element, except one

class that contains exactly two adjacent vertices. More

particularly, a contraction is elementary when it induces

an elementary partition.

Fig. 5

An elementary contraction can be viewed as gluing two

adjacent vertices following their common edge. Fig. 5

illustrates an elementary contraction h and its kernel

G/h.

An homomorphism invariant is a non negative real

valued function ∂ verifying: ∂(G)≥∂(h(G)) for any

homomorphism h. The number of vertices, edges as well

as the diameter are trivial invariants. It is easy to observe

that any contraction is the commutative composition of

elementary contractions. That means that if a property is

an invariant for any elementary contraction it is also, by

induction, a contraction invariant. An immediate

property of that observation is that contractions preserve

planarity. For a connected subgraph G' of G, we define

discon(G') as the number of connected components

(possibly a single vertex) that we obtain when we

remove G'. We call it the disconnecting capacity of G'. It

is easy to prove that for any contraction h we have:

discon(G')≥discon(h(G')). This property yields an

interesting corollary (that can easily generalized for

higher dimensions): any bi-dimensional grid of an odd

size m (i.e. Gm,m), with m≥3 cannot be contracted to any

path Im+1. In Fig. 6 we illustrate this: the grid G2,2 cannot

be contracted to the path I3. To have an idea of the

general demonstration note, in Fig. 6, that the central

vertex c has a disconnecting capacity of 1 since its

removal does not disconnect the graph. At the same time

it is at a maximal distance of 2 from all the other

vertices, so it cannot be homomorphically mapped to the

two outer vertices of I3. So, if a contraction exists, its

image h(c) is necessarily a vertex in the middle of I3,

which disconnects I3, thus increasing its disconnecting

capacity, which is impossible.

The maximal disconnecting capacity of a graph, mdc(G),

is the maximum discon(G') that we can obtain from a

subgraph G'. Since discon(G') does not increase, mdc(G)

is a contraction invariant. In Fig. 7, we have mdc(G)=2

and mdc(H)=3.

A cycle contains a chord when two not subsequent

vertices of the cycle are connected. Chordless cycles that

are also retracts are called holes. For instance, in Fig. 3,

the cycle [1, 2, 4, 3] is a chordless cycle since opposite

vertices (like 1 and 4) are not adjacent, but is not a hole,

since there is no possible retraction on this cycle. Let

hole(G) be the greatest length of a hole in G. For

instance, in Fig. 3, hole(G) = 3 and hole(H) = 4. The

only holes of grids are the cycles of length 4. So the hole

number of any grid, of any dimension, is 4. It can be

proved by induction that elementary contractions do not

increase the hole number, so hole(G) is also a

contraction invariant.

Fig. 6

Fig. 7

As we said in the previous sections, if we assume the

connectivity of functional regions, contraction invariants

can be used to constraint qualitative graphs. For

instance, in Fig. 6, the non homomorphism property

based on the disconnecting capacity invariant says that if

we observe a software with two integer inputs

partitioned in 9 classes of a bidimensional plane

(combination of negatives and positive coordinates) it is

impossible to observe a completely linear behavior. The

mdc(G) invariant, in Fig. 7, permits to say that when

inputs of a software system follow a cyclic finite state

machine with a central Error state, then the observed

output region transitions cannot have a star-like

topology. A transition edge is missing. The hole number

permits to conclude that any system with any number of

scalar inputs cannot exhibit a 5-cycle behavior without,

at least, a missing transition among the states of the

cycle.

c

I3

h

G2,2

h
Error

missing transition?

G H

 h H ≈ G/h

An
equivalence

class

Contraction invariants can also be used to deduce some

important properties of the input graph. Let's take an

interesting example. Suppose one has a system (like a

robot) that he controls with two integer variables

forming a planar input graph. Suppose now that this

robot exhibits a good behavior (this is a vertex of the

output qualitative graph H). One wants to be sure that

small perturbations on input variables (the graph G) will

not suddenly change robot's behavior. That is, we want

to be sure that whatever would be the output behavior,

there is the possibility of maintaining the robot in the

same configuration while smoothly changing its control

variables (a sort of controllability). That necessitates all

the control surfaces of our system to be connected since

we wish to visit all the points of a region without

jumping into another. In other words there must be a

contraction between G and H. Suppose now that, during

the testing of our robot, we observe a graph H containing

a 5-cycle hole, or, a graph with so many transitions that

make it no planar. In both cases, we can conclude that

there is no possibility of contraction. Thus, inverse

images are not connected and the system is not

controllable.

5 Conclusion
Qualitative reasoning has been applied for the testing of

protocol oriented software components and proved to be

very beneficial. Software designing, programming,

testing and debugging are very complex and error prone

human activities. Conventional software engineering

methods and tools are very powerful but lack of a global

qualitative formalism to help the engineer to understand

the system behavior. A formalism based on graph

homomorphisms has been presented. Software is viewed

as a sort of continuous map transformation between two

abstract data spaces likewise a phase transition system.

The qualitative graph envisions the global of the

software system and respects some constraints that are

independent of its internal structure. Those constraints,

called invariants, express topological properties of graph

homomorphisms. They can be used to infer the possible

shapes of the qualitative graph. An automatic abstraction

tool has been presented. Many questions may arise: can

we abstract all common input data structures with a

proximity relation? Is it possible to express more

quantitative information in the qualitative graph labels?

How do we handle state machines, time and memory?

How this formalism can be extended to physical and/or

artificial systems? Do endomorphisms or retractions

express some specific classes of software behavior? Can

we classify software applications according to the

properties of their endomorphisms (that is, the properties

of the generated monoid)? How the map composition of

homomorphisms can express system integration? Is it

possible to express some software errors as the

composition of the correct map with an error map that

one could study in more details? All those questions are

open but we think that the main contribution of our

formalism resides in the fact that it proposes a bridge

between qualitative system analysis and a very seminal

area of applied mathematics.

References:

[1] Charles Rich. Artificial intelligence and software

engineering: the programmer's apprentice project. In

Proceedings of the 1984 annual conference of the

ACM, 1984.

[2] Althoff K.-D. Case-Based Reasoning. In Handbook

on Software Engineering and Knowledge

Engineering. Vol. 1 "Fundamentals", Chang, S. K.,

Editor, World Scientific. pages 549-588, 2001.

[3] Bert Bredeweg and Peter Struss. Current Topics in

Qualitative Reasoning. AI Magazine, Winter 2004.

[4] Antoine Missier, Spyros Xanthakis and Louise

Trave-Massuyes. Qualitative Algorithmics using

Order of Growth Reasoning. In Proceedings ECAI

94, pages 750-754, 1994.

[5] Wolfgang Mayer and Markus Stumptner. Model-

Based Debugging using Multiple Abstract Models. In

Procs of the 5th IWAAD, pages 55-70, 2003.

[6] Louise Travé-Massuyès et al. Le raisonnement

qualitatif pour les sciences de l'ingénieur, chapter 12,

Editions Hermès, France, 1997.

[7] Flemming Nielson, Hanne Riis Nielson. Principles of

Program Analysis, Springer, 1998.

[8] Spyros Xanthakis, Pascal Régnier and Constantinos

Karapoulios. Le test des logiciels, Etudes et logiciels

informatiques. Editions Hermès, France, 2000.

[9] Virginie Guiraud. Visualisation du comportement

dynamique des logiciels numériques. Rapport de

stage, société SOPRA, 2001-2003.

[10] Steven J. Zeil Faten H. Afifi Lee J. White.

Detection of linear errors via domain testing. ACM

Press, New York, NY, USA, 1992.

[11] Constantinos Karapoulios. Raisonnement Qualitatif

Appliqué au Test Evolutif des Logiciels. Thèse de

Doctorat, I.R.I.T, Université Paul Sabatier, Toulouse,

France, Juillet 1999.

[12] Pavoll Hell and Jaroslav Nesetril. Graphs and

Homomorphisms. Oxford Lecture Series in

Mathematics and its Applications, Oxford University

Press, 2004.

[13] G. R. Brightwell and P. Winkler, Gibbs measures

and dismantlable graphs, J. Graph Theory 11 (1987)

71-79.

[14] Gena Hahn and Gary MacGillivray. Graph

homomorphisms: computational aspects and infinite

graphs. Research report, Université de Montreal,

June 2002.

