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Abstract: - This paper presents numerical modelling of eddy currents non destructive testing in three dimensional plate work piece. The three dimensional governing field’s equations are expressed in terms of coupled magnetic vector and electric scalar potentials AV in conducting media and simply magnetic vector potential in non conducting regions. The problem is solved by 3D finite element discretisation implemented in Matlab software.  The displacement of the sensor operating in differential mode is simulated without remeshing the study domain. The proposed method is based on one of a Geometrical Band Technique (GBT) using the physical properties assignment and the Nodal Interpolation Technique (NIT) based on the connection between separately homogeneous fixed and moving meshes. The impedance change at each position of the sensor is then computed, which permits to keep the presence of defect and its influence on the eddy current distribution. 

Key-Words: –3D Finite element method, eddy current non-destructive testing, 3D sensor movement simulation.    

1 Introduction

The eddy currents testing technique works on the principle of electromagnetic induction; it consists on the detection of the magnetic field due to the eddy current induced on the tested specimen. The presence of the defect modifies the eddy currents pattern and hence gives rise to field perturbation closely related to the position and shape of the defects. The distribution of the eddy current in the probes depends on various parameters such as, excitation frequency, conductivity and permeability of the probe, and also the presence of material defect. The excitation field is carried out by using a coil fed by an alternating current and the changed impedance coil can be computed to account the defect influence on the induced currents [1]. 
     In the present work, 3D numerical model based on the finite element method is implemented to understand interactions between fields and materials defects. Starting from the Maxwell’s equation, eddy current testing phenomenon can be expressed in the form partial derivative equation in term of magnetic vector potential and electrical scalar potential. The numerical solution of such equations leads to the fields and eddy current distributions, and then to the impedance variations. The proposed techniques for simulating the sensor displacement need only one mesh. These techniques are the 3D geometrical band technique based on the physical property assignment and 3D nodal interpolation for connecting homogeneous separately fixed and moving meshes.

2 Eddy current governing equations

The eddy current test phenomenon can be expressed by the governing field equation solved by 3D finite element method. The application of Coulomb gauge
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, would allow simultaneous solution of magnetic vector and scalar potentials. In the conducting media, where the induced eddy current flow, the governing equations can be written as [2]:  


[image: image2.wmf](

)

(

)

0

=

Ñ

+

+

×

Ñ

Ñ

-

´

Ñ

×

´

Ñ

v

A

j

A

A

p

s

ws

u

u

r

r

r

             (1)


[image: image3.wmf](

)

0

=

Ñ

+

×

Ñ

v

A

j

r

w

s

                                                 (2)

and the nonconducting regions that contain the impressed current sources, the magnetic vector potential equations are defined as:
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    With 
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 the current density source and 
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  the penalty term. For obtaining symmetrical formulation we use the transformation
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3 Finite element formulation   

The space discretisations of the 
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formulation using weighted residual and Galerkin’s methods and introducing the approximation function with taking natural boundary conditions leads to the following discrete integral form [3] :  
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    Where 
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 and 
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 are respectively the shape vector and scalar function. The magnetic vector potential and electrical scalar potential are given by the approximated shape function respectively:
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    With 
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the unit vectors.

    The substitutions of (6) in the integral forms (4) and (5) for all finite elements leads to the following algebraic system.
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    The general terms are:  
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    The model makes use of first order tetrahedral elements, with 
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 at cyclic permutations. The magnetic vector potential 
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and electrical scalar potential 
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are obtained after solving the algebraic equation and then the other physical quantities such as the magnetic flux, the induced eddy current density and the impedance sensor can be calculated for each displacement step of the sensor.

4  Impedance sensor calculation

The change in the coils resistance 
[image: image27.wmf]R

 and reactance
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, for impedance probe, can be determined through energy and power calculations [4]:        
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 is the current source intensity at frequency
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are respectively the magnetic induction and field; and 
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 the induced current density.

5 Simulation of the sensor displacement  

5.1 Geometrical band technique

The displacement of the sensor along the load specimen is made using the geometrical band technique defined from the extension of the 2D one [5]. This technique consists on two steps:

· Create a geometrical band, which is subdivided in elementary regions of height
[image: image37.wmf]z

D

.

· Locate in the geometrical band the finite element corresponding on the probe and air for assignment their physical properties at each displacement step.

    After one displacement, the sensor nodes and the surrounding air are localised for assignment of their properties.
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    This method for 3D devices is simply implemented for conducting or non-conducting media with imposed fixed step displacement.

5.1 Nodal interpolation technique

Independently of the used formulation (potentials vector/scalar), the nodal interpolation technique consists on the coupling homogeneous fixed and moving meshes by the  detection of the position on the voluminal element in the fixed mesh with each node position of the interface moving mesh.  This method implementation requires different steps:

· Realize homogeneous separately fixed and moved meshes and locate the nodes of the fixed and moving meshes interfaces.
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· Locate the nodes coordinates of the moving

interface 
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[image: image41.wmf](

)

fixed

i

i

i

z

y

x

,

,

, and compute the connection matrix.

· Solve the global assembled problem and 

       realise the new nodes connectivity of the 

       moved mesh for the next displacement step,

 
ensuring periodic boundary

       conditions.

    The 
[image: image42.wmf]A

formulation used for the fixed mesh and the 
[image: image43.wmf]A
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formulation for the moved mesh lead to the following matrixes (8-12):
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    The connection condition of the magnetic vector potentials between the interfaces is given by the linear combination expressed as: 
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    The connecting matrix depends on the coordinates of the fixed and moving meshes nodes and is given by:
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    The general form of the assembled fixed, moving and connection matrixes leads to the global matrix:
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 is transposed matrix of
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    The advantage of such a method is to keep a symmetrical matrix without generating additional unknowns. The mesh topology varies continuously according to displacement. However its nodal character ensures only average continuity of the potentials. For this reason, it's advisable to have an homogeneous mesh in both sides of the connected interface [6].

6  Application

The inspection of thin plate is usually carried out by using the eddy current testing through the analysis of the impedance variation along the defect length. The sensor operates in differential mode and is excited by harmonic current in opposite direction for both coils. The following Fig.3 represents the studied device [7].
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    The filamentary coils are excited by sinusoidal current 5
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 respectively. The considered lift-off between the sensor and plate is 
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d. The rectangular defect have L=4d length, H=d width and 75% d thickness. The 3D mesh shows the plate region and geometrical band containing air and sensor region. For each displacement, the nodes and sensor finite elements are located for assignment their properties. 
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    For the validation and showing the effectiveness of the implemented finite element model simulating sensor movement, the impedance changes for a rectangular crack defect  are calculated (see  Fig.5 and Fig.6). 
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    The impedance change value depends on the height of the defect, and the phase depends on the thickness of the defect. The proposed methods for sensor movement simulation gives validated results at the considered frequency.   

5  Conclusion  

In this paper, we have presented the eddy current non-destructive testing modelling tools implemented in Matlab software. The numerical approach based on finite element method is used for solving the fields equations with magnetic vector and electrical scalar potentials formulation in three dimensional cases. For testing the validity of the proposed model, the results rectangular shape defect on plate work piece are compared using two techniques for sensor movement simulation, the 3D geometrical band technique based on the physical assignment properties and the nodal interpolation technique for ensuring connection between homogeneous separately fixed and moving. The model can be extended for other defects shape and for non linear materials.  
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Fig. 4. 3D mesh of the device illustrating the


            geometrical band 





Fig. 1. Geometrical band technique for 


            sensor movement simulation





Fig. 3. 3D geometrical device configuration


           





Fig. 5. Plan of impedance variations 





Fig. 2. Nodal interpolation technique


           for connecting meshes.















































Fig. 6. Plan of impedance variations
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