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Abstract: - The paper deals with the state estimation problem for impulsive control system described by
linear differential equations containing impulsive terms (or measures). Models of this kind arise in applied
areas ranging from space navigation to investment problems as well as ecological management. The aim
of the paper is to find the external set-valued estimates of the reachable sets of impulsive control systems
with special ellipsoidal constrains on the admissible values of control functions and on the initial state
vectors. Basing on the techniques of so-called ellipsoidal calculus we give a new state estimation approach
that uses the impulsive structure of the control problem and is based on external ellipsoidal approximation
of a convex union of ellipsoids. The examples of construction of such external state estimates for linear
impulsive control systems are given.
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1 Introduction

In this paper the impulsive control problem for a
dynamic systems with unknown but bounded ini-
tial states is studied. Such problems arise from
mathematical models of dynamical and physical
systems for which we have an incomplete descrip-
tion or a loose mode of time dependence of their
generalized coordinates [1, 2, 3, 4, 5, 6, 7, 8]. The
topics of this paper come from the theory of sys-
tems with unknown, but bounded uncertainties
(the case of the so-called ”set-membership” de-
scription of uncertainties). The numerical simula-
tion schemes developed for such problems require
techniques of set–valued analysis, particularly its
constructive methods — ellipsoidal or box–valued
calculus [4, 3, 9].

There is a long list of publications devoted to
impulsive control optimisation problems, among
them we mention here only the results related to
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the present investigation [10, 11, 12, 13, 14, 15].

In this paper we apply the well known results
of the theory [3, 4] of ellipsoidal estimating of the
states of dynamical control systems with classi-
cal (measurable) controls and construct the esti-
mation algorithms that allow to find set-valued
bounds for the reachable sets of impulsive control
problem under uncertainty.

We study the problem under a special re-
striction on control functions defined by a given
generalized ”ellipsoid” in the space of functions
of bounded variations. In particular, under such
restriction vectors of impulsive jumps of admis-
sible controls have to belong to a given finite-
dimensional ellipsoid.

We introduce here state estimation algorithms
based on the properties and on the special struc-
ture of solutions of differential systems with im-
pulsive controls, in particular we construct the
ellipsoidal estimates for a convex envelope of the
union of related ellipsoids of a finite dimensional
space. The examples of external ellipsoidal esti-
mates of reachable sets of linear impulsive control
systems are given also.



2 Problem Formulation

Consider a dynamic control system described
by a differential equation with impulsive control
(measure) u(·):

dx = A(t)xdt + du, x(−0) = x0, (1)

or in the integral form [14],

x(t) = x(t; u(·), x0) = X(t)x0 +

+
t∫

0

X(t)X−1(τ)du(τ). (2)

Here we assume that A(t) is continuous n×
n - matrix function, X(t) is the fundamental ma-
trix solution Ẋ = A(t)X (X(0) = I), u(·) ∈ V n

p

(1 ≤ p < ∞) where V n
p means the space of n-

vector functions u(·) such that u(t) is continuous
from the right on [0, T ) with u(−0) = 0 and

Vp[u(·)] = sup
{ti|0=t0<...<tk=T}

k∑

i=1

‖u(ti)−u(ti−1)‖p < ∞

‖u‖p =

(
n∑

i=1

|ui|p
) 1

p

, u = (u1, . . . , un).

Let E0 be an ellipsoid in Rn:

E0 = {l ∈ Rn | l′Q0l ≤ 1}, (3)

where Q0 is a given symmetric positive definite
n× n matrix.

Denote Cn
q the space of continuous n-vector

functions y(·) with the norm

‖y(·)‖∞,q = max
0≤t≤T

‖y(t)‖q.

It is well known that the space V n
p = Cn∗

q where
p = 1 if q = ∞, p = ∞ if q = 1 and 1 < p < ∞
if q = (1− p−1)−1.

Consider the so-called ”ellipsoid” E in Cn
q :

E = {y(·) ∈ Cn
q | y′(t)Q0y(t) ≤ 1 ∀t ∈ [0, T ]} =

= {y(·) ∈ Cn
q | y(t) ∈ E0 ∀t ∈ [0, T ]} (4)

and its conjugate E∗ ⊂ V m
p ,

E∗ = {u(·) ∈ V m
p ‖

T∫

0

y(t)du(t) ≤ 1 (5)

∀y(t) ∈ E , t ∈ [0, T ]}.
Definition 1. The function u(·) ∈ V m

p will be
called the admissible control if u(·) ∈ U = E∗.

Let u(·) be a piecewise constant function on
[0, T ] with discontinuity instants {ti} and with

∆u = u(ti+1)− u(ti) ∈ E∗0 = {z ∈ Rn|
z′Q−1

0 z ≤ 1 }. (6)

Then u(·) is admissible.

We will assume also that the initial value x0

to the system (1) is unknown but bounded with
a given bound x0 ∈ X0,

X0 = {x0 | x′0R
−1x0 ≤ 1} (7)

where R is a symmetric positive definite n × n
matrix.

Denote

X (t;X0) =
⋃

x0∈X0

⋃

u∈U

x(t;u(·), x0).

Definition 2. The set X (t;X0) is called the reach-
able set of the impulsive differential system (1)
from the initial set X0 at instant t.

So the main problem of the paper is to find
the external estimates of ellipsoidal type for the
reachable set X (T ;X0) basing on the special el-
lipsoidal structure of sets X0 and U .

3 Preliminaries

We mention here some results concerning the prop-
erties of X (T ;X0). It is known [12, 13] that X (T ;X0)
is convex and compact in Rn and the following
theorems are valid.
Theorem 1. Let l0 6= 0, u0 ∈ U x0 ∈ X0 be such
that

ρ(l0| X (T ;X0)) = max
x∈X (T,X0)

l′0x =

= l′0x(T ;u0, x0); X(T, τ) = X(T )X−1(τ).

Then

T∫

0

l′0X(T, τ)du0(τ) = max
u∈U

T∫

0

l′0X(T, τ)du(τ)

and
l′0X(T, 0)x0 = max

x∈X0

l′0X(T, 0)x.



Theorem 2. For any point x that belongs to the
boundary of the reachable set X (T ;X0) there ex-
ists an admissible piecewise constant control func-
tion ũ(·) ∈ U with no more than n points {ti} of
discontinuity such that (1) x(T ; ũ, x0) = x with
some x0 ∈ X0 and (2) the jumps ∆iũ = ũ(ti+1)−
ũ(ti) of ũ(·) belong to the ellipsoid E∗.
Example 1. Consider the following control sys-
tem:

{
dx1(t) = x2(t)dt + du1(t),
dx2(t) = du2(t),

(8)

Here X0 = {0} and the set U is generated by
the ellipsoid

E0 =
{
l ∈ R2 | l′Q0l ≤ 1

}
,

Q0 =

(
a2 0
0 b2

)
, a, b > 0.

From Theorems 1-2 we have:

ρ(l| X (T ;X0)) =
T∫

0

l′X(T, τ)du0(τ) =

= max
0≤τ≤T

(G(τ, l))
1
2 (9)

where G(τ, l) = l′X(T, τ)Q0X
′(T, τ)l. The reach-

able set X (T ; 0) is given at the Fig. 1 where we
denote

x∗1 =
a2

√
a2 + 0.25T 2b2

< a,

x∗2 =
a2 + 0.5T 2b2

√
a2 + 0.25T 2b2

> Tb,

E1 = {x ∈ R2 | 1
a2

(x1 − x2T )2 +
x2

2

b2
≤ 1},

E2 = {x| x′Q−1
0 x ≤ 1}.

4 Main Results

In this section we apply the techniques of the el-
lipsoidal calculus to find the external estimates
for X (T ; X0).

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

x1 

x2 

0 

b 

−b 

x2* 

Tb 
a 

x1* 
−x1* −Tb 

−x2* 

a=2, b=4, T=1 

X(T) 

E1 

E2 

Figure 1. The reachable set X (T ) = X (T ;X0).

4.1 First Approach

We take X0 = {0} first and denote X (T ) = X (T ; {0})
and

T∗ = {τ∗ ∈ [0, T ] | ∃l∗ 6= 0, (G(τ∗, l∗))
1
2 =

max
0≤τ≤T

(G(τ, l∗))
1
2 } (10)

with G(τ, l) defined in the above section.
Assumption P. We will assume further that the
set T∗ is finite:

T∗ = {τ∗1, τ∗2, . . . , τ∗m} ⊂ [0, T ].

The class of systems for which this assump-
tion is valid is not empty, e.g. it is fulfilled in
Example 1.

From Theorem 2 we have

Theorem 3. Under the assumption P we have

X (T ) = co
⋃

τ∈T∗

E(0, Qτ ), (11)

E(0, Qτ ) = {x ∈ Rn | x′Q−1
τ x ≤ 1},

Qτ = X(T, τ)Q0X
′(T, τ).

Applying the results [3, 4] we have from The-
orem 3
Theorem 4. For each p = (p1, . . . , pm) > 0

X (T ) ⊆ E(0, Q+
p )

⋂
S(0,K) (12)

where

Q+
p = (p1 + p2 + . . . + pm)(p−1

1 Qτ1+

+p−1
2 Qτ2 + . . . + p−1

m Qτm), (13)



S(0,K) = {x ∈ Rn|||x|| ≤ K},
K = max

l′l=1,τ∈T∗
(l′Qτ l)

1
2 . (14)

This first approach is illustrated by the fol-
lowing example.

Example 2. Consider again the system (8) of
the example 1. Let now a = b = T = 1. In
this case we can easily find the ball S(0;K) and

the constant K =
√

3+
√

5
2 . The upper ellipsoid

E(0, Q+
p ) for the sum E0 + E1 is defined by

Q+
p = (1 + p−1)Q0 + (1 + p)Q1,

Q0 =

(
1 0
0 1

)
, Q1 =

(
2 1
1 1

)
,

√
λmin ≤ p ≤

√
λmax,

where λmin(λmax) is a minimal (maximal) root
of equation |Q0 − λQ1| = 0. Therefore λmin =√

3−√5
2 and λmax =

√
3+
√

5
2 . Then X (1, 0) ⊂

S(0,K) ∩ Ep(0, Q+
p ) (see Fig.2 with p =

√
2).
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Figure 2. First estimate of X (T ).

4.2 Second Approach

Consider first the auxiliary problem.
Problem AP. Given two ellipsoids

E0 = {x ∈ Rn | x′Q−1
0 x ≤ 1},

E1 = {x ∈ Rn | x′Q−1
1 x ≤ 1}, (15)

find an ellipsoid

E2 = {x ∈ Rn | x′Q−1
2 x ≤ 1}

that contains E0∪E1 (therefore, the E2 will contain
the convex hull co(E0 ∪ E1)).

Equivalently, we need to find a symmetric
positive definite matrix Q2 such that for all l ∈ Rn

(l′Q0l)
1
2 ≤ (l′Q2l)

1
2 , (l′Q1l)

1
2 ≤ (l′Q2l)

1
2 , (16)

and it is desirable also that the ellipsoid E2 was of
minimal possible volume [4].

We need to do three consequent steps to solve
the Problem AP.

Step 1. Let λ1 . . . λn be the roots of the equa-
tion

|Q0λ−Q1| = 0 (17)

(note that λi > 0 (i = 1 . . . n) are the eigenvalues
of matrix Q−1

0 Q1).

Denote B = Q
− 1

2
0 Q1Q

− 1
2

0 . The matrix B is
also symmetric and positive definite [16] and there
exists an orthogonal matrix T such that [16]

T ′BT = diag{λ1, . . . , λn} = W 2, (18)

(TT ′ = T ′T = I).

We transform the coordinates from the vector x to
the new variable s that satisfies the equality x =

Q
1
2
0 Ts. Under this transformation the ellipsoids

E0, E1 (15) become the ellipsoids

Ẽ0 = {s ∈ Rn | s′s ≤ 1}, (19)

Ẽ1 = {s ∈ Rn | s′(W 2)−1s ≤ 1}
where W 2 determined in (18).

Step 2. We construct the ellipsoid Ẽ2 ⊇ Ẽ0 ∪
Ẽ1 where

Ẽ2 = {s ∈ Rn | s′Q̃2
−1

s ≤ 1},

Q̃2 = diag{µ2
1, . . . , µ

2
n}

µ2
i = max{1, λi}, i = 1, 2, . . . , n.

Theorem 5. Ellipsoid Ẽ2 is minimal with re-
spect to inclusion among all ellipsoids containing
Ẽ0

⋃ Ẽ1.
The proof of this theorem follows from the

properties of ellipsoids and the result ([4], corol-
lary 5.1).

Step 3. We return to the space of x - coor-
dinates and therefore we get the inclusion

E2 = {x ∈ Rn | x′Q−1
2 x ≤ 1} ⊇ (E0 ∪ E1),



Q2 = Q
1
2
0 TQ̃2T

′Q
1
2
0 .

It should be noted that applying this 3-steps
procedure consequently we can solve the main es-
timation problem under the above assumption P
that guarantees the finite number of such steps.
The second approach allows to estimate the reach-
able set more precisely than the first one, but
it takes more calculations. The combination of
methods 1 and 2 allows to find more exact esti-
mates.
Example 3. Let us apply the above scheme to
the system (8) of Examples 1-2. Here we take

Q0 =

(
1 0
0 1

)
, Q1 =

(
2 1
1 1

)
.

According to steps 1-3 we need to find first an
orthogonal matrix T . We have in this case

T =




√
1+
√

5
2
√

5
−

√
2√

5(1+
√

5)
√

2√
5(1+

√
5)

√
1+
√

5
2
√

5


 ,

E0 = {x | x′Q−1
0 x ≤ 1} = T Ẽ0, Ẽ0 = {s | s′s ≤ 1},

E1 = {x | x′Q−1
1 x ≤ 1} = T Ẽ1,

Ẽ1 = {s | s′(W 2)−1s ≤ 1},
Ẽ2 = {s | s′Q̃2

−1
s ≤ 1} ⊃ Ẽ0 ∪ Ẽ1,

Q̃2 =

( √
3+
√

5
2 0

0 1

)
.

The Fig.3 illustrates the above inclusion.

E2

~

E1

~ E0

~

l1

l2

Figure 3. Auxiliary ellipsoids Ẽ0, Ẽ1, Ẽ2.

Therefore we get the inclusion

E2 = {x | x′Q−1
2 x ≤ 1} ⊃ E0 ∪ E1, Q2 = TQ2T

′

and finally we have

Q2 =
1 +

√
5√

5

(
1.5 0.5
0.5 1

)
.

The inclusion E2 ⊃ E0 ∪ E1 is shown at Fig. 4.
Comparing Fig. 4 with Fig.1-2 we get X (1) ⊂ E2.

E2

E1

E0

Figure 4. The second estimate of X (T ).

5 Conclusion

We presented here some approaches that allow
to find the external set-valued estimates of the
reachable sets of linear impulsive control systems.
The examples that illustrate the techniques of el-
lipsoidal calculus discussed in the paper are also
given.
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