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Abstract: - The paper deals with the introduction of notion of discontinuous solution for nonlinear system with
distributions in the right hand side of the system and with time delay. The definition of solution based on the closure
of the set of smooth solutions in the space of functions of bounded variation. Sufficient conditions of existence and
continuous dependence on initial function so defined solutions are received. The specified conditions for existence
of solutions for linear systems with distributions in a matrix of system is obtained. For such systems it is received
the representation of solution of Cauchy problem.
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1 Introduction

This paper devote to the problem of definition of solu-
tion for nonlinear system with distributions in right
hand side of the system and with time delay. The
question on definition of the solution in such systems
without time delay was considered in [1, 2, 3, 4, 5, 6,
7, 8, 9]. This works use approach based on the defi-
nition of solution as a limit of a sequence of smooth
solutions, it was generated by smooth approximations
of distributions in the right side of the system. This
approach is natural from the point of view of the the-
ory of control [10] where impulsive control frequently
are the idealized processes with the large changes of
parameters for the short time intervals.

This approach is realized here for systems with
time delay. Also, the linear system with the gener-
alized functions in a matrix of the system and with
time delay is considered. Sufficient conditions of ex-
istence so defined solutions are received. The theo-
rem about continuous dependence on initial function
of discontinuous solutions is proved. The formula for
representation of solution for the Cauchy problem is
established.
∗ The research was supported by the Russian Founda-
tion for Basic Researches (RFBR) under project No.
03-01-00722.

2 Discontinuous solutions of nonlinear differ-
ential equations with time delay

We consider the following system of the differential
equations

ẋ = f(t, x(t), x(t− τ)) + B(t, x(t))v̇(t), (1)

herex(t), v(t) are accordinglyn andm - dimensional
vector functions of time,f(t, x, y) is ann - dimen-
sional vector-valued function,B(t, x) isn×m matrix-
valued function,τ > 0 is a constant delay,ϕ(t) is an
initial function (initial condition) of bounded variation
given on[t0−τ, t0]. Further we assume thatf(t, x, y)
is continuous int and Lipschitz inx, y, B(t, x) con-
tinuous int and Lipschitz inx with constant L.

If v(t) is absolutely continuous and if the in-
equalities

‖f(t, x, y)‖ ≤ κ(1 + ‖x‖), ‖B(t, x)‖ ≤ κ(1 + ‖x‖)
holds for all admissiblet, x andy, then a solution of
equation (1) on[t0, ϑ] can be constructed by means of
the steps method [11].

If v(t) is a function of bounded variation, then
the derivatives in (1) are necessary to be considered in
a generalized sense. If the functionv(t) is discontinu-
ous att∗, then the system will be acted by an impulse
at the momentt∗. Thus, we meet the problem of mul-
tiplication of discontinuous functions by generalized
ones in the termB(t, x(t))v̇(t).



Definition 1. A vector-valued function of bounded
variationx(t) will be called an approximable solution
to (1), if x(t) is a pointwise limit on[t0, ϑ] of the se-
quencexk(t), wherexk(t) are the absolutely contin-
uous solutions of equation (1) with absolutely contin-
uous functionsvk(t), pointwise converging tov(t) if
x(t) does not depend on the choice of sequencevk(t).

This definition differs from definition of the dis-
continuous solution entered in [9] for the of neutral
type differential equation because in this case there is
no necessity to approximate initial function.

Theorem 1. Letf(t, x, y) andB(t, x) satisfy the con-
ditions mentioned above. In addition to it, we assume
that there exist the partial derivatives∂bi,j/∂xν that is
continuous onx, which satisfy the following equali-
ties

n∑

ν=1

∂bij(t, x)
∂xν

bνl(t, x) =
n∑

ν=1

∂bil(t, x)
∂xν

bνj(t, x)

(Frobenius condition)i = 1, 2, ..., n; j, l = 1, 2, ..., m.
Then for any vector function of bounded variationv(t)
there exists the approximable solutionx(t) of (1) such
that this solution satisfies to the integral equation

x(t) = ϕ(t0) +
t∫

t0

f(ξ, x(ξ), x(ξ − τ)) dξ

+
t∫

t0

B(ξ, x(ξ)) dvc(ξ)

+
∑

ti≤t, ti∈W−

S(ti, x(ti − 0), ∆v(ti − 0))

+
∑

ti<t, ti∈W+

S(ti, x(ti),∆v(ti + 0)). (2)

Here vc(t) is an continuous part of the function of
bounded variationv(t),

S(t, x,∆v) = z(1)− z(0),

ż(ξ) = B(t, z(ξ))∆v(t), z(0) = x,

and the setW− (W+) is the set of points in which the
functionv(t) is discontinuous from the left (from the
right),

∆v(t−0) = v(t)−v(t−0), ∆v(t+0) = v(t+0)−v(t).

Proof. On an intervalt0 ≤ t ≤ t0 + τ the system (1)
takes the form

ẋ = f(t, x(t), ϕ(t− τ)) + B(t, x(t))v̇(t).

ϕ(t) is the known function. Then for this system we
can apply the result [9]. According to [9] under the
assumptions of this theorem it is possible to conclude,
that system (1) on the interval[t0, t0 + τ ] has the so-
lution. Furthermore, this solution will satisfy to equa-
tion (2), where we must changex(ξ− τ) onϕ(ξ− τ).
Then we can construct the solution on[t0, ϑ] by the
steps method [11].

3 Continuous dependence on initial function
of discontinuous solutions for differential
equations with time delay

Now we shall give the following

Definition 2. Supposeϕk(t) is a sequence of initial
functions pointwisely converging to a functionϕ(t),
xk(t) is a sequence of approximable solutions of sys-
tem(1) generated by the sequenceϕk(t), andx(t) is
an approximable solution of the same system corre-
sponding to the initial functionϕ(t). We shall say,
that the solutionx(t) depends continuously on the ini-
tial function ϕ, if ∀ t ∈ [t0, tf ] xk(t) pointwisely
converges tox(t) ask →∞.

Theorem 2. Let in a region of variablest ∈ [t0, tf ], x
andy ∈ Rn a vector functionf(t, x, y) and matrix
function B(t, x) satisfy the conditions of theorem 1.
In addition to it, the following inequality holds

|f(t, x, y)− f(t, x∗, y∗)| ≤ L|x− x∗|+ M |y − y∗|.

Then the approximable solutionx(t) of system(1) de-
pends continuously on the initial functionϕ(t).

Proof. Letxϕ(t) andx∗ϕ(t) be approximable solutions
of system (1) corresponding to any initial functions of
bounded variationϕ andϕ∗. Let’s denote a difference
ϕ(t0)− ϕ∗(t0) by ∆ϕ(t0), then we can write

xϕ(t)−xϕ∗(t) = ∆ϕ(t0)+
t∫

t0

(f(ξ, xϕ(ξ), xϕ(ξ−τ))

−f(ξ, xϕ∗(ξ), xϕ∗(ξ − τ))) dξ

+
t∫

t0

(B(ξ, xϕ(ξ))−B(ξ, xϕ∗(ξ))) dvc(ξ)



+
∑

ti≤t,ti∈W−

(S(ti, xϕ(ti − 0), ∆v(ti − 0))

−S(ti, xϕ∗(ti − 0), ∆v(ti − 0)))

+
∑

ti<t,ti∈W+

(S(ti, xϕ(ti),∆v(ti)

−S(ti, xϕ∗(ti), ∆v(ti))). (3)

According to [9] the following estimation is valid

|S(ti, xϕ(ti − 0),∆v(ti − 0))

−S(ti, x∗ϕ(ti − 0), ∆v(ti − 0))| ≤
≤ (eK|∆v(ti−0)| − 1) |xϕ(ti − 0)− x∗ϕ(ti − 0)|.

Then it is possible to estimate the sum
∑

ti≤t,ti∈W−

|S(ti, xϕ(ti − 0), ∆v(ti − 0))

−S(ti, xϕ∗(ti − 0), ∆v(ti − 0))| ≤
≤

∑

ti≤t,ti∈W−

(eK|∆v(ti−0)| − 1)∗

∗|xϕ(ti − 0)− xϕ∗(ti − 0)|. (4)

The similar estimation is valid and for ’right jumps’ in
pointsti.

If we compute modules of the left and the right
sides of equality (3 ) and estimate the right module
by using ’triangle inequalities’, Lipschitz condition
for functionsf(t, x, y) andB(t, x) and estimation (4),
then we shall have

|xϕ(t)− xϕ∗(t)| ≤ |∆ϕ(t0)|+ L

t∫

t0

|xϕ(ξ)

−xϕ∗(ξ)| dξ + M

t∫

t0

|xϕ(ξ − τ)− xϕ∗(ξ − τ)| dξ

+L

t∫

t0

|xϕ(ξ)− xϕ∗(ξ)| |dvc(ξ)|

+
∑

ti<t,ti∈W+

(eK|∆v(ti)| − 1) |xϕ(ti)− xϕ∗(ti, )|

+
∑

ti≤t,ti∈W−

(eK|∆v(ti−0)| − 1) |xϕ(ti − 0)

−xϕ∗(ti−0)| ≤ |∆ϕ(t0)|+L

t∫

t0

|xϕ(ξ)−xϕ∗(ξ)| d(ξ

+ var
[t0, ξ]

vc(·)) + M

t∫

t0

|xϕ(ξ − τ)− xϕ∗(ξ − τ)| dξ

+
∑

ti<t,ti∈W+

(eL|∆v(ti)| − 1)|xϕ(ti)− xϕ∗(ti)|

+
∑

ti≤t,ti∈W−

(eL|∆v(ti−0)| − 1)∗

∗|xϕ(ti − 0)− xϕ∗(ti − 0)|. (5)

For t ∈ [t0, t0 + τ ] inequality (5) takes the form

|xϕ(t)− xϕ∗(t, )| ≤ |∆ϕ(t0)|+ L

t∫

t0

|xϕ(ξ)

−xϕ∗(ξ)| d(ξ + var
[t0, ξ]

vc(·))

+M

t∫

t0

|ϕ(ξ − τ)− ϕ∗(ξ − τ)| dξ

+
∑

ti<t,ti∈W+

(eL|∆v(ti)| − 1)|xϕ(ti)− xϕ∗(ti)|

+
∑

ti≤t,ti∈W−

(eL|∆v(ti−0)| − 1)∗

|xϕ(ti − 0)− xϕ∗(ti − 0)|. (6)

According to [9] the solution of integral inequality (6)
can be estimated like

|xϕ(t)− xϕ∗(t)| ≤ eL·P (t)[|∆ϕ(t0)|

+M

t∫

t0

e−L·P (s)|ϕ(s− τ)− ϕ∗(s− τ)| ds].

Here

P (t) = t− t0 + var
[t0, t]

vc +
∑

ti<t,ti∈W+

|∆v(ti)|

+
∑

ti≤t,ti∈W−

|∆v(ti − 0)|.

It is clear that for anyt ∈ [t0, t0 + τ ] xϕ∗(t) point-
wisely converges toxϕ(t) asϕ∗(t) pointwisely con-
verges toϕ(t).

For the following step whent ∈ [t0 + τ, t0 +2τ ]
we have

|xϕ(t)− xϕ∗(t)| ≤ |xϕ(t0 + τ)− xϕ∗(t0 + τ)|

+L

t∫

t0+τ

|xϕ(ξ)− xϕ∗(ξ)| d(ξ + var
[t0+τ , ξ]

vc(·))



+M

t∫

t0+τ

|xϕ(ξ − τ)− xϕ∗(ξ − τ)| dξ]

+
∑

ti≤t,ti∈W−

(eL|∆v(ti−0)|−1)|xϕ(ti−0)−xϕ∗(ti−0)|

+
∑

ti<t,ti∈W+

(eL|∆v(ti)| − 1)|xϕ(ti)− xϕ∗(ti)|. (7)

Applying the estimation from [9] mentioned above to
the solution of inequality (7) we can write

|xϕ(t)− xϕ∗(t)| ≤ eL·P (t)[|∆ϕ(t0)|

+M

t∫

t0

e−L·P (s)|xϕ(s− τ)− xϕ∗(s− τ)| ds].

From the results of the first step it follows that for any
t ∈ [t0 + τ, t0 + 2τ ] xϕ∗(t) pointwisely converges to
xϕ(t) as ϕ∗(t) pointwisely converges toϕ(t). Con-
tinuing in the same way, we see that this statement
is valid for anyt ∈ [t0, tf ]. So it is possible to con-
clude, that the approximable solutionx(t) for system
of differential equations(1) depends continuously on
the initial functionϕ(t).

4 Cauchy formula for linear differential equa-
tions with distributions in a matrix of sys-
tem and with time delay

In this section we consider a linear system of the dif-
ferential equations

ẋ(t) = Ā(t)x(t) + C(t)x(t− τ) + h(t), (8)

whereĀ(t) = A(t) +
m∑

i=1
Di(t)v̇i(t), A(t) andC(t)

are continuousn×n-matrix functions,h(t) is a vector
function with summable elements,Di(t) are continu-
ousn×n - matrix functions for anyi ∈ 1,m, vi(t) are
components of a vector function of bounded variation
v(t) = (v1(t), v2(t)..., vm(t))T , τ > 0 is a constant
time delay,ϕ(t) is an initial function - the function of
bounded variation defined on[t0 − τ, t0].

Applying theorem 1 to system (8) we shall ob-
tain

Theorem 3. Let the matrixesDi(t) (i ∈ 1,m) be
mutually commutative for allt ∈ [t0, ϑ]. Then there
exists an approximable solutionx(t) of (8), which sat-
isfies to the integral equation

x(t) = ϕ(t0) +
t∫

t0

A(ξ)x(ξ) dξ +
t∫

t0

h(ξ) dξ

+
m∑

i=1

t∫

t0

Di(ξ)x(ξ) dvc
i (ξ) +

t∫

t0

C(ξ)x(ξ − τ) dξ

+
∑

ti≤t, ti∈W−

S̃(ti, x(ti − 0), ∆v(ti − 0))

+
∑

ti<t, ti∈W+

S̃(ti, x(ti), ∆v(ti + 0)).

Here
S̃(t, x, ∆v) = z(1)− z(0),

ż(ξ) =
m∑

i=1

Di(t)x(ξ)∆vi(t), z(0) = x.

Theorem 4. By assumptions of theorem 3 the approx-
imable solution of system(8) represents as

x(t) = xhom(t) +
t∫

t0

U(t, s)h(s) ds,

wherexhom(t) is the solution of corresponding homo-
geneous system,U(t, s) is a fundamental matrix of
system(8) being the solution of the integral equation

U(t, s) =





E +
t∫
s

A(ξ)U(ξ, s) dξ

+
m∑

i=1

t∫
s

Di(ξ)U(ξ, s) dvc
i (ξ)

+
t∫
s

C(ξ)U(ξ − τ, s)dξ

+
∑

ti≤t, ti∈W−
S̃(ti, U(ti − 0, s),

∆v(ti − 0)) +
∑

ti<t, ti∈W+

S̃(ti, U(ti, s),

∆v(ti)), t ≥ s,
0, s− τ ≤ t < s.

(9)
Here the functions of jumps̃S(t, U(t, s),∆v(t)) are
defined by means of equations

S̃(t, U(t, s), ∆v(t)) = z(1)− z(0),

ż(ξ) =
m∑

i=1

Di(t)z(ξ)∆vi(t), z(0) = U(t, s)

(10)

Proof. Letvk(t) will be a sequence of absolutely con-
tinuous functions, pointwisely converging to a func-
tion of bounded variationv(t). If system (8) is writ-
ten down for any element of the sequencevk(t), then
we can apply the theorem of variations on constants



from [12]. Any element of the sequence of absolutely
continuous solutionsxk(t) of system (8) satisfy the
following equation

xk(t) = xhom
k (t) +

t∫

t0

Uk(t, s)h(s) ds, (11)

herexhom
k (t) is the solution of the corresponding ho-

mogeneous system of the differential equations and
Uk(t, s) is the solution of the integral equation

Uk(t, s) =





E +
t∫
s

A(ξ)Uk(ξ, s) dξ

+
m∑

i=1

t∫
s

Di(ξ)Uk(ξ, s) dvik(ξ)

+
t∫
s

C(ξ)Uk(ξ − τ, s) dξ, t ≥ s,

0, s− τ ≤ t < s.

It is not difficult to show, that the sequencexk(t) is
bounded and the sequence of variations of vector func-
tions xk(t) on [t0, ϑ] is bounded also. Let the se-
quencexk(t) on [t0, ϑ] pointwisely converges tox(t).
Otherwise, according to Helly theorem [13], it is pos-
sible to select a converging subsequence from the se-
quencexk(t) . Similarly, the sequenceUk(t, s) point-
wisely converges to certain matrix functionU(t, s)
such thatU(t, s) is the function of bounded variation
both on a variable t, and on a variable s.

Then, according to Lebesgue theorem [13], in
equality (11) it is possible to pass to the limits ask −→
∞. Then we obtain

x(t) = lim
k→∞

xhom
k (t) + lim

k→∞

t∫

t0

Uk(t, s)h(s) ds

= xhom(t) +
t∫

t0

lim
k→∞

Uk(t, s)h(s) ds =

= xhom(t) +
t∫

t0

U(t, s)h(s) ds,

whereUk(t, s) is the solution of the integral equation

Uk(t, s) =





E +
t∫
s

A(ξ)Uk(ξ, s)dξ

+
m∑

i=1

t∫
s

Di(ξ)Uk(ξ, s) dvik(ξ)+

+
t∫
s

B(ξ)Uk(ξ − τ, s)dξ, t ≥ s,

0, s− τ ≤ t < s.

and the pointwise limit of the sequenceUk(t, s). Fur-
thermore, the functionU(t, s) will be the solution of
integral equation (9) by theorem 2.

5 Conclusion

We have introduced the definition of the solution for
the system of differential equations with distributions
in the right hand side of system and time delay. The
entered definition possesses property of a physical re-
alizability and it is natural from the point of view of
the theory of control. Sufficient conditions for exis-
tence so defined solution are proved. The theorem
about continuous dependence on the initial function of
discontinuous solutions is proved. For the linear sys-
tem with a matrix containing distributions the Cauchy
formula is obtained.
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