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Abstract: - The paper deals with the introduction of notion of discontinuous solution for nonlinear system with

distributions in the right hand side of the system and with time delay. The definition of solution based on the closur
of the set of smooth solutions in the space of functions of bounded variation. Sufficient conditions of existence an
continuous dependence on initial function so defined solutions are received. The specified conditions for existen
of solutions for linear systems with distributions in a matrix of system is obtained. For such systems it is receiver

the representation of solution of Cauchy problem.
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1 Introduction

This paper devote to the problem of definition of solu-
tion for nonlinear system with distributions in right
hand side of the system and with time delay. The
guestion on definition of the solution in such systems
without time delay was considered in [1, 2, 3, 4, 5, 6,
7, 8, 9]. This works use approach based on the defi-
nition of solution as a limit of a sequence of smooth
solutions, it was generated by smooth approximations
of distributions in the right side of the system. This
approach is natural from the point of view of the the-
ory of control [10] where impulsive control frequently
are the idealized processes with the large changes of
parameters for the short time intervals.

This approach is realized here for systems with
time delay. Also, the linear system with the gener-
alized functions in a matrix of the system and with
time delay is considered. Sufficient conditions of ex-
istence so defined solutions are received. The theo-
rem about continuous dependence on initial function
of discontinuous solutions is proved. The formula for
representation of solution for the Cauchy problem is
established.

* The research was supported by the Russian Founda-
tion for Basic Researches (RFBR) under project No.
03-01-00722.

2 Discontinuous solutions of nonlinear differ-
ential equations with time delay

We consider the following system of the differential
eguations

&= J(t.a(t),a(t — 7)) + Blt,a@®)o(t), (1)

herex(t), v(t) are accordingly: andm - dimensional
vector functions of timef(¢,z,y) is ann - dimen-
sional vector-valued functiot3 (¢, x) is nxm matrix-
valued functiony > 0 is a constant delayy(¢) is an
initial function (initial condition) of bounded variation
given onty — 7, to]. Further we assume thitt, x, y)
is continuous int and Lipschitz inz, y, B(t,z) con-
tinuous int and Lipschitz inz with constant L.

If v(t) is absolutely continuous and if the in-
equalities

1tz 9)| < w(L+ lzl), (1B 2)] < s(1 4+ [l])

holds for all admissible, + andy, then a solution of
equation (1) onty, ¥] can be constructed by means of
the steps method [11].

If v(¢) is a function of bounded variation, then
the derivatives in (1) are necessary to be considered in
a generalized sense. If the functioft) is discontinu-
ous att*, then the system will be acted by an impulse
at the moment*. Thus, we meet the problem of mul-
tiplication of discontinuous functions by generalized
ones in the ternB (¢, x(t))v(t).



Definition 1. A vector-valued function of bounded
variationz(t) will be called an approximable solution
to (1), if z(¢) is a pointwise limit onty, 1] of the se-
quencery(t), wherexy(t) are the absolutely contin-
uous solutions of equation (1) with absolutely contin-
uous functions(t), pointwise converging to(t) if
x(t) does not depend on the choice of sequence).

This definition differs from definition of the dis-
continuous solution entered in [9] for the of neutral
type differential equation because in this case there is
no necessity to approximate initial function.

Theorem 1 Let f(¢, x,y) andB(t, x) satisfy the con-
ditions mentioned above. In addition to it, we assume
that there exist the partial derivatives; ; /0x, that is
continuous orne, which satisfy the following equali-
ties

" Oby(t,x)
8$V

"L Objj(t, )
Z o0z,

r=1

by;(t, )

(Frobenius condition) = 1,2, ...,n; j,l = 1,2,...,m
Then for any vector function of bounded variatio(t)
there exists the approximable solutieft) of (1) such
that this solution satisfies to the integral equation

t

2(t) = plto) + [ F(&a(©). (€ — 7)) d

to

t

+ [ Blea(©) avr(e)

to

S(ti, x(ti — 0), Av(ti — 0))

+

ti<t, t;eWy

S(ti, x(ti), Av(ti +0)). (2

Here v¢(t) is an continuous part of the function of
bounded variatiom(¢),

S(t,x, Av) = z(1) — 2(0),

2(§) = B(1, 2(£))Av(t),

and the setV_ (1/,.) is the set of points in which the
functionw(t) is discontinuous from the left (from the
right),

2(0) = =z,

Av(t—0) = v(t)—v(t—0), Av(t+0) = v(t+0)—v(t).

Proof. On an intervaty <t < ty + 7 the system (1)
takes the form

&= f(t,x(t), p(t — 7)) + B(t, z(t))0(t).

©(t) is the known function. Then for this system we
can apply the result [9]. According to [9] under the
assumptions of this theorem it is possible to conclude,
that system (1) on the intervéh, ¢ty + 7| has the so-
lution. Furthermore, this solution will satisfy to equa-
tion (2), where we must chang&¢ —7) onp(§ — 7).
Then we can construct the solution @g, 9] by the
steps method [11].

3 Continuous dependence on initial function
of discontinuous solutions for differential
equations with time delay

Now we shall give the following

Definition 2. Supposep(t) is a sequence of initial
functions pointwisely converging to a functigs(t),
xy(t) is a sequence of approximable solutions of sys-
tem (1) generated by the sequengg(t), andz(t) is

an approximable solution of the same system corre-
sponding to the initial functionp(¢). We shall say,
that the solutiorx:(¢) depends continuously on the ini-
tial function ¢, if V¢t € [to,tf] xx(t) pointwisely
converges ta:(t) ask — oc.

Theorem 2 Let in a region of variablese [to,t¢], «
andy € R™ a vector functionf(t,z,y) and matrix
function B(t, z) satisfy the conditions of theorem 1.
In addition to it, the following inequality holds

‘f(tvxa y) -

Then the approximable solutiarit) of system(1) de-
pends continuously on the initial functias(t).

(7, y:)| < Llw — | + My — yal.

Proof. Letz,(t) andz;, () be approximable solutions
of system (1) corresponding to any initial functions of
bounded variatiop andy*. Let’s denote a difference
o(to) — ¢*(to) by Ap(to), then we can write

2o() =2 (1) = Dplto) + [ (F(€,20(6). 2,6~ 7))
—f(575”<p* (6), L (& —1)))d¢

+ [(Bl&a,(€) - Bl&,ap () dv(€)



0), Av(t; — 0))

+ D

ti<t,t;eW_

—S(ti, xp (t;

>

ti<t,t; €Wy
S (ti, 2 (1), Av (1)), 3)

According to [9] the following estimation is valid

(S(ti, zp(ti —

—0), Av(t; - 0)))
(S(ti, wp(ti), Av(t:)

|S(ti, m@(ti — 0), A’U(ti — O))

—S(ts, xl,(t

iy
< (€K|Av(t¢7

—0),Av(t; — 0))] <
1)t — 0) — (8 — ).

Then it is possible to estimate the sum

Z |S(ti, xy(t; — 0), Av(t; — 0))
ti <t t;eW_
—S(t;, xp (t; — 0), Av(t; — 0))| <
< Z (ef 1200l _ 1)
t<tt;€W_
*‘xcp(ti —0) - Tp* (ti = 0)[. (4)
The similar estimation is valid and for right jumps’ in
pointst;.

If we compute modules of the left and the right
sides of equality (3 ) and estimate the right module
by using ’triangle inequalities’, Lipschitz condition
for functionsf (¢, x, y) andB(t, z) and estimation (4),
then we shall have

[70(8) = 70 (0] < [Ag(to)] + L [ foy(€)

to

(g + M [ fagl6 = 7) = e (€ = 7))

iL / |20 (€) — e ()] |dve(£)]

S

ti<tt;,eWi

>

i<t t;€W_

(€K|Av(ti)| _ 1) ’J)(p(tz) — -’L'gp* (tzv )’

(6K|Av(ti—0)|

— 1) |ze(ti = 0)

2 (6= 0)| < 1Ap(t0)] +L [ [0,(&) = ()] dl€

to

+ Vaé () + M/ [2p(§ = 7) — 2 (§ — 7)[ dE

I Z (eL‘A’U(ti)‘ _ 1)|:L‘go(tl) — 3399* (t’L)|
t;<tt, €Wy
N Z (6L|Av(t¢*0)\ —1)x
t<tt,eW_
#[xp(t; — 0) — e (ti — 0)]. ©)

Fort € [to, to + 7] inequality (5) takes the form
[25(8) — e ()] < [Aglto)| + L [ 1,(6)

—zp () d(§ + Y, v(+))

t

+M [ lolg = 1) =" (€ = )| dg

to

Y (A 1) ay () — 2 (1)
ti<t,t; €Wy
+ Z (€L|Av(ti_0)‘ — 1)*
t; <t t,€W_
| (ti — 0) — 2= (t; — 0)]. ()

According to [9] the solution of integral inequality (6)
can be estimated like

20(t) — 2o ()] < 2 PO Ap(to)
M [ PO (s = 1) = (s = 1) ds).

to
Here
P(t)=t—to+ var v°+ > |Av(t;)|
[to, 1] ti<t,t; €W,
+ > |Au(t - 0).
i <t,t; €W

It is clear that for anyt € [to,to + 7] x,+(t) point-
wisely converges ta,(t) asy*(t) pointwisely con-
verges tap(t).

For the following step when e [to + 7, to + 27]
we have

2o () — T (D)] < |zp(to + 7) — e (to + 7)|

t

+L [ loule) -

to+7

e (E)d(E+ var v°(-))

[to+T,¢&]



t

M / |2(€ — ) — 2 (€ — 7)| dE)

to+T7

> (A0 1) g (5—0) — e (t-0))|
t; <t,t;EW_
n Z (eL|AU(ti)| — 1)|x§0(t ) — Tp* ( )| (7)
L <t,t; €Wy

Applying the estimation from [9] mentioned above to
the solution of inequality (7) we can write

24 (1) = 2 ()] < PO Ap(to)]

+M/

From the results of the first step it follows that for any
t € [to + 7,to + 27] 2, (t) pointwisely converges to
z,(t) asy*(t) pointwisely converges te(t). Con-
tinuing in the same way, we see that this statement
is valid for anyt € [to,t]. So it is possible to con-
clude, that the approximable solutiefit) for system

of differential equation$1) depends continuously on
the initial functiony(t).

POz ,(s = 7) — 2pe (s — 7)| ds].

4 Cauchy formula for linear differential equa-
tions with distributions in a matrix of sys-
tem and with time delay

In this section we consider a linear system of the dif-
ferential equations

(t) = A(t)z(t) + C(t)x(t — 7) + h(t), (8)
where A(t) = A(t) + Z D;(t)vi(t), A(t) andC(t)

are continuous x n- matrlx functionsh(t) is a vector
function with summable elementd);(¢) are continu-
ousn x n - matrix functions for any € 1, m, v;(t) are
components of a vector function of bounded variation
v(t) = (vi(t),v2(t)..., v ()T, 7 > 0 is a constant
time delay,(t) is an initial function - the function of
bounded variation defined dty — 7, to].

Applying theorem 1 to system (8) we shall ob-
tain
Theorem 3 Let the matrixesD;(t) (i € 1,m) be
mutually commutative for alt € [to,]. Then there
exists an approximable solutiatit) of (8), which sat-
isfies to the integral equation

t
() d§+/h(€)d§
to

o(t) = ¢lto) + [ A

to

+Z/D €) dug( +/C )de

1= 1t0

o

ti<t, t;eW_

>

ti<t, t; €W

S(ti, x(t: — 0), Av(t; — 0))

S(t;, x(t;), Av(t; + 0)).

Theorem 4. By assumptions of theorem 3 the approx-
imable solution of syster(8) represents as

z(t) = zhom(t) +/U(t,s)h(s) ds,

wherez"°™ (t) is the solution of corresponding homo-
geneous systent/(t, s) is a fundamental matrix of
system(8) being the solution of the integral equation

t
E+ !A(ﬁ)U(f, s)d¢
+ 3

, (€, 8) dvi (€)
=1

t
!C(S)U(S —7,8)d§

Z S’(ti,U(ti—O,S),
i <t, t;,eW_

Av(t; =0))+ X

ti<t,t;€Wy
Av(t;)), t > s,
0,s—7<t<s.

zDz’(f)U

S
X3
I
+ o+

S(ti, U(ti, 8),

i (9)
Here the functions of jumpS$(¢,U(t,s), Av(t)) are
defined by means of equations

g(t, Ul(t,s),Av(t)) = z(1) — z(0),
{6 = 3 Di=OAu(), =(0) = Ult,s)
=1

(10)

Proof. Letwvy(t) will be a sequence of absolutely con-
tinuous functions, pointwisely converging to a func-
tion of bounded variatiow(t). If system (8) is writ-
ten down for any element of the sequengét), then

we can apply the theorem of variations on constants



from [12]. Any element of the sequence of absolutely
continuous solutions:,(¢) of system (8) satisfy the
following equation

m@:xyww+/mmgmﬁw, (11)

herezfo™(t) is the solution of the corresponding ho-
mogeneous system of the differential equations and
Ui (t, s) is the solution of the integral equation

+

It is not difficult to show, that the sequeneg(t) is
bounded and the sequence of variations of vector func-
tions x(t) on [t, ] is bounded also. Let the se-
quencery(t) on[ty, 9] pointwisely converges to(t).
Otherwise, according to Helly theorem [13], it is pos-
sible to select a converging subsequence from the se-
quencer(t) . Similarly, the sequendgy (¢, s) point-
wisely converges to certain matrix functidi(¢, s)
such that/ (¢, s) is the function of bounded variation
both on a variable t, and on a variable s.

Then, according to Lebesgue theorem [13], in
equality (11) itis possible to pass to the limitsias—
oo. Then we obtain

x(t) = lem ahom(t) + hm /Uk t,s)

Ui(t,s) = +Z!&@%@@@MQ+

and the pointwise limit of the sequenbg(t, s). Fur-
thermore, the functiod/ (¢, s) will be the solution of
integral equation (9) by theorem 2.

5 Conclusion

We have introduced the definition of the solution for
the system of differential equations with distributions
in the right hand side of system and time delay. The
entered definition possesses property of a physical re-
alizability and it is natural from the point of view of
the theory of control. Sufficient conditions for exis-
tence so defined solution are proved. The theorem
about continuous dependence on the initial function of
discontinuous solutions is proved. For the linear sys-
tem with a matrix containing distributions the Cauchy
formula is obtained.
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