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Abstract: - Quadratic programming problems are widespread class of nonlinear programming problems with many 
practical applications. The case of inequality constraints have been considered in a previous author’s paper. Later on 
an extension of these results for the case of inequality and equality constraints has been proposed. Based on equivalent 
formulation of Kuhn-Tucker conditions, a new neural network for solving the general quadratic programming 
problems, for the case of both inequality and equality constraints has been presented. In this contribution a discrete 
version of this network is proposed. Two theorems for global stability and convergence of this network are given as 
well. The presented network has lower complexity and it is suitable for FPGA implementations. Simulation results 
based on SIMULINK® models are given and compared. 
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1   Introduction 
The most important advantages of using NN for solving 
constrained optimization problems over the traditional 
methods are: 
− The structure of a neural network can be 

implemented efficiently using VLSI or optical 
technologies; 

− Neural networks can solve many optimization 
problems with much faster convergence rate and can 
overcome singular problems. 

Thus the neural networks approach to optimization 
problems have been received considerable attention in 
recent years [1]. In 1984 Chua and Lin [2] developed 
the canonical non-linear programming circuit, using the 
Kuhn-Tucker conditions from mathematical 
programming theory [7]. Some important neural 
networks for solving general non-linear programming 
problems are presented in [3], [4]. The authors 
implicitly utilize the penalty function method [1], [4], 
[7] whereby a constrained optimization problem is 
approximated by an unconstrained optimization 
problem. The neural network models contain penalty 
parameter, and hence the true solution is obtained when 
the penalty parameter is infinite. Because of this the 
network generates an approximate solution only. The 
so-called primal-dual neural network [5], [6] has no 
penalty parameter and is capable of finding the exact 
solution. However, the size of the network is very high 
and it has two-layer structure. 
The computing time required for a solution of 
constrained optimization problems and in particular 
quadratic programming problem is greatly dependent 
on the dimension of the problem. The situation is worse 
in the case of singularities. 

 
Quadratic programming problems are widespread class 
of nonlinear programming problems with many 
practical applications. The case of inequality 
constraints have been considered in [8]. An extension 
of these results for the case of inequality and equality 
constraints is given in [9]. Based on equivalent 
formulation of Kuhn-Tucker conditions, a new neural 
network for solving the general quadratic programming 
problems, for the case of both inequality and equality 
constraints, is presented. In this paper a discrete version 
of this network is proposed. Two theorems for global 
stability and convergence of this network are given as 
well. The presented network has lower complexity and 
it is suitable for FPGA implementations. 
The paper is outlined as follows. In the next section we 
consider the continuous neural network for solving 
quadratic programming problems with presence of both 
inequality and equality constraints. In section 3 we 
propose a discrete version of the continuous neural 
network from section 2. In Section 4 we present 
simulation results for both neural networks and we end 
up with some conclusions in Section 5. 
 
 
2   Continuous neural network for 
solving general quadratic programming 
problem 
We consider the following general quadratic 
programming problem 
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where (.)i is the i-th element of the corresponding 
vector. 
The above formulation is equivalent to the following 
equation: 
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Thus, x* is a solution of the original problem if and 
only if there exists  such that mR∈λ
 

0=−−+ νλ TT АGqPx    (7a) 
( λ−= GxFGx    (7b) 

bAx =     (7c) 
Because P is nonsingular from (7a) 
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Then x* is a solution of the original problem if and 
only if there exists  such that mR∈λ

0=+− RQPx Tλ   (12a) 
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Let  and , then x* is a solution 
of the original problem if and only if there exists 

 such that 

TQGPW 1−= RGPV 1−=

mR∈λ
( )λλλ −−=− VWFVW   (14a) 

( ) VVWFW =−−− λλλ   (14b) 
where the vector function F is given by (6). 
Based on the above we propose a continuous Neural 
Network for solving the original problem. Its state 
variables are defined by the following dynamic system: 

( ) VWVWF
dt
d

+−−−= λλλλτ  (15) 

where  , ,  and τ=1/µ 
is a diagonal matrix with time constants. 

TQGPW 1−= RGPV 1−= mR∈λ

This system can be easily realized by a recurrent neural 
network with a single layer structure (Figure 1). In fact 
this is a continuous time neural network and its circuit 
realization consists of m integrators and m2+2m 
summers. To get the final solution with respect to x we 
use the system architecture given in Figure 1, which 
includes the proposed neural network. 
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Fig.1: The architecture of the continuous time neural 

network presented in [9] 



The proposed neural network for the case m=2 is given 
in Figure 2. To get the solution with respect to x one 
has to use liner block that realizes 13(a). 
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Fig.2: The continuous time neural network from [9] for 

the case m=2 
 
 
3   Discrete neural network for solving 
general quadratic programming problem 
The discrete time neural networks are extension of their 
continuous time counterparts because of the availability 
of design tools and the compatibility with computers 
and other digital devices [1]. A discrete version for 
solving equation (14) is given by 

( 1) ( ) ( ) ( ) ( )( )k k k k kT F W V Wu V dtλ λ λ λ+ ⎡ ⎤= + − − − +⎣ ⎦ (16) 

where 
TQGPW 1−= , , RGPV 1−= ( 1) ( ),k k mRλ λ+ ∈ T I W, = +  

and dt is the step size. 
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Fig.3: The architecture of the proposed discrete time 

neural network 
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Fig.4: The discrete system for solving the general 

quadratic programming problem (1) 
 
This system could be realized with a discrete time 
neural network given in Figure 3. This architecture is 
similar to the architecture of the continuous neural 
network given in Figure 1, but instead of integrators 
here we have m time delays. The system architecture 
for obtaining the solution of the original problem (1) is 
given in Figure 4. 
The proposed discrete neural network for the case m=2 
is given in Figure 5. It is a single layer structure that 
contains m=2 unit delay elments. 
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Fig.5: The proposed discrete time neural network for 

the case m=2 
 



The proposed structure can be viewed as a common 
model of discrete cellular neural network for solving 
general quadratic programming problem. 
The following theorems give conditions for global 
stability and convergence of the proposed neural 
network model. 
Theorem 1: Given any initial point, there exists a 
unique solution of (13). The equilibrium point of (13) 
correspond to a solution of (1) and it is unique when 
rank (A)=m and P is positive definite. 
Proof: See [8], [9]. 

Theorem 2: If 2

2
T

h <  the discrete sequence {λ(k)} 

generated by the discrete time neural network (13) is 
globally convergent to a solution of (1). 
Proof: See [8], [9]. 
 
 
4   Simulation results 
In this section we present simulation results for the 
Neural Network architectures considered. We consider 
the following simple example: 
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For this example we have m=2, n=2 and p=1. The goal 
function at levels 1,2,…,10 and the constraints of 
problem (18) are given in Figure 6. The solution of this 
problem is the point x* = (x1*, x2*) = (0.5, 2.5) as can 
be easily verified analytically.  

 
Fig.6: The goal function at levels 1,2,…,10 and the 

constraints of problem (18) 
 
The same solution of problem (17) is obtained by use 
of standard function fmincon from Optimization 
Toolbox of MATLAB®. 

We utilize the SIMULINK® model of the continuous 
Neural Network given in Figure 2, and have simulated 
its behavior with time constants τ1=1 and τ2=1. 
The simulation results for state variables (x1, x2) and λ 1 
and λ 2 for initial conditions λ(0) =(λ 1(0), λ 2(0))=(4, 5) 
are given in Figure 7 and Figure 8. 
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Fig.7: Simulation results for state variables x1 and x2 

with initial conditions λ(0)=(λ 1(0), λ 2(0))=(4, 5) for the 
continuous neural network model from Figure 2. 
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Fig.8: Simulation results for state variables λ1 and λ2 

with initial conditions λ(0)=(λ 1(0), λ 2(0))=(4, 5) for the 
continuous neural network model from Figure 2. 

 
The speed of the transient depends on time constants. 
The network settled down at the equilibrium point 
which is the solution of the original problem (17). 
We used the SIMULINK® model of the discrete 
Neural Network given in Figure 5, and have simulated 
its behavior for step size dt=0.001. The simulation 
results for state variables (x1, x2) and λ 1 and λ 2 for 
initial conditions λ(0) =(λ 1(0), λ 2(0))=(4, 5) are given 
in Figure 9 and Figure 10. 
The results are similar with this obtained by the 



continuous model, but the general advantage of the 
discrete model is that it is suitable for FPGA 
implementations. The low complexity of the proposed 
network is also advantage of the model considered. 
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Fig.9: Simulation results for state variables x1 and x2 

with initial conditions λ(0)=(λ 1(0), λ 2(0))=(4, 5) for the 
discrete neural network model from Figure 5. 
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Fig.10: Simulation results for state variables λ1 and λ2 

with initial conditions λ(0)=(λ 1(0), λ 2(0))=(4, 5) for the 
discrete neural network model from Figure 5. 

 
 
5   Conclusions 
In this paper a discreet version of recently proposed 
recurrent neural network for solving general quadratic 
programming problems, for the case of both inequality 
and equality constraints, is presented. The global 
convergence and stability of this network is proved. 
The presented network has lower complexity and it is 
suitable for FPGA implementations. Simulation results 
based on SIMULINK® models are given and 
compared. 
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