
Discrete neural network for solving general quadratic programming
problems

VALERI MLADENOV

1Department of Theoretical Electrical Engineering, Faculty of Automatics, Technical University of Sofia
 8, Kliment Ohridski St, Sofia-1000, BULGARIA

Abstract: - Quadratic programming problems are widespread class of nonlinear programming problems with many
practical applications. The case of inequality constraints have been considered in a previous author’s paper. Later on
an extension of these results for the case of inequality and equality constraints has been proposed. Based on equivalent
formulation of Kuhn-Tucker conditions, a new neural network for solving the general quadratic programming
problems, for the case of both inequality and equality constraints has been presented. In this contribution a discrete
version of this network is proposed. Two theorems for global stability and convergence of this network are given as
well. The presented network has lower complexity and it is suitable for FPGA implementations. Simulation results
based on SIMULINK® models are given and compared.

Key-Words: - Quadratic programming problems, Kuhn-Tucker conditions, Neural networks, Cellular neural networks

1 Introduction
The most important advantages of using NN for solving
constrained optimization problems over the traditional
methods are:
− The structure of a neural network can be

implemented efficiently using VLSI or optical
technologies;

− Neural networks can solve many optimization
problems with much faster convergence rate and can
overcome singular problems.

Thus the neural networks approach to optimization
problems have been received considerable attention in
recent years [1]. In 1984 Chua and Lin [2] developed
the canonical non-linear programming circuit, using the
Kuhn-Tucker conditions from mathematical
programming theory [7]. Some important neural
networks for solving general non-linear programming
problems are presented in [3], [4]. The authors
implicitly utilize the penalty function method [1], [4],
[7] whereby a constrained optimization problem is
approximated by an unconstrained optimization
problem. The neural network models contain penalty
parameter, and hence the true solution is obtained when
the penalty parameter is infinite. Because of this the
network generates an approximate solution only. The
so-called primal-dual neural network [5], [6] has no
penalty parameter and is capable of finding the exact
solution. However, the size of the network is very high
and it has two-layer structure.
The computing time required for a solution of
constrained optimization problems and in particular
quadratic programming problem is greatly dependent
on the dimension of the problem. The situation is worse
in the case of singularities.

Quadratic programming problems are widespread class
of nonlinear programming problems with many
practical applications. The case of inequality
constraints have been considered in [8]. An extension
of these results for the case of inequality and equality
constraints is given in [9]. Based on equivalent
formulation of Kuhn-Tucker conditions, a new neural
network for solving the general quadratic programming
problems, for the case of both inequality and equality
constraints, is presented. In this paper a discrete version
of this network is proposed. Two theorems for global
stability and convergence of this network are given as
well. The presented network has lower complexity and
it is suitable for FPGA implementations.
The paper is outlined as follows. In the next section we
consider the continuous neural network for solving
quadratic programming problems with presence of both
inequality and equality constraints. In section 3 we
propose a discrete version of the continuous neural
network from section 2. In Section 4 we present
simulation results for both neural networks and we end
up with some conclusions in Section 5.

2 Continuous neural network for
solving general quadratic programming
problem
We consider the following general quadratic
programming problem

bAx
hGx

rxqPxxxf TT

=
≥

++=
2
1)(min

 (1)

where
nxnRP∈ is positive definite matrix, , mxnRG∈
pxnRA∈ , , nRq∈ Rr ∈ , nRx∈

From Kuhn-Tucker conditions [1], [7] it follows that x*
is a solution of the above problem if there exists
and

mR∈λ
pR∈ν such that

0=−−+ νλ TT АGqPx (2)
and

() ii hGx = if 0>iλ (3a)
() ii hGx ≥ if 0=iλ (3b)

bAx = (3c)
where (.)i is the i-th element of the corresponding
vector.
The above formulation is equivalent to the following
equation:

0),(≥−= λλGxFGx (4)
where

(T
myFyFyF)(),...,()(1=)

)

 (5)
and

⎩
⎨
⎧

≥
<

=
iii

iii
i hyy

hyh
yF

,
,

)((6)

Thus, x* is a solution of the original problem if and
only if there exists such that mR∈λ

0=−−+ νλ TT АGqPx (7a)
(λ−= GxFGx (7b)

bAx = (7c)
Because P is nonsingular from (7a)

()qAGPx TT −+= − νλ1 (8a)
and thus

()λ−= GxFGx (8b)
() bqAGAP TT =−+− νλ1 (8c)

From (8c)
bqAPAAPGAP TT =−+ −−− 111 νλ (9a)

qAPGAPbAAP TT 111 −−− +−= λν (9b)
Therefore

() (qAPGAPbAAP TT 1111 −−−− +−= λ)ν (9c)

Substituting (9c) in (7a) we get

()
() () 0111111

11

=−

+−−+
−−−−−−

−−

qAPAAPАGAPAAPА

bAAPАGqPx
TTTTT

TTT

λ

λ (10)

Let

()()ТTTTT GGAPAAPAQ −−= −−− 111 (11a)

() ()()bAAPAqAPAAPAqR TTTT 11111 −−−−− −−= (11b)

Then x* is a solution of the original problem if and
only if there exists such that mR∈λ

0=+− RQPx Tλ (12a)
()λ−= GxFGx (12b)

Hence
()RQPx T −= − λ1 (13a)

() ()()λλλ −−=− −− RQGPFRQGP TT 11 (13b)
()λλλ −−=− −−−− RGPQGPFRGPQGP TT 1111 (13c)

Let and , then x* is a solution
of the original problem if and only if there exists

 such that

TQGPW 1−= RGPV 1−=

mR∈λ
()λλλ −−=− VWFVW (14a)

() VVWFW =−−− λλλ (14b)
where the vector function F is given by (6).
Based on the above we propose a continuous Neural
Network for solving the original problem. Its state
variables are defined by the following dynamic system:

() VWVWF
dt
d

+−−−= λλλλτ (15)

where , , and τ=1/µ
is a diagonal matrix with time constants.

TQGPW 1−= RGPV 1−= mR∈λ

This system can be easily realized by a recurrent neural
network with a single layer structure (Figure 1). In fact
this is a continuous time neural network and its circuit
realization consists of m integrators and m2+2m
summers. To get the final solution with respect to x we
use the system architecture given in Figure 1, which
includes the proposed neural network.

R V

V

udu/dt

Wu

u

Wu

F

Q'u

R

x

intrgrator

inv(P)

Q'

G*inv(P)

W=G*inv(P)*Q'

F[Wu-V-u]

mu

Fig.1: The architecture of the continuous time neural

network presented in [9]

The proposed neural network for the case m=2 is given
in Figure 2. To get the solution with respect to x one
has to use liner block that realizes 13(a).

du(1)/dt

du(2)/dt

u(1)

u(2)

u

u

u

Wu

V

V

R

Q'u

Q'u-R

y=Wu-V-u

Wu
F(Qu-p-u)

u

V

R

x

x(2)

x(1)

Kmu

Kinv(P)

x

Workspace x

u

Workspace u

K

W=G*inv(P)Q'

K

Q'
s

1

Int2

s

1

Int1

K

G*inv(P)

f(u)

F(y(2))

f(u)

F(y(1))

m

m

m

[R(1); R(2)]

Constant

Fig.2: The continuous time neural network from [9] for

the case m=2

3 Discrete neural network for solving
general quadratic programming problem
The discrete time neural networks are extension of their
continuous time counterparts because of the availability
of design tools and the compatibility with computers
and other digital devices [1]. A discrete version for
solving equation (14) is given by

(1) () () () ()()k k k k kT F W V Wu V dtλ λ λ λ+ ⎡ ⎤= + − − − +⎣ ⎦ (16)

where
TQGPW 1−= , , RGPV 1−= (1) (),k k mRλ λ+ ∈ T I W, = +

and dt is the step size.

V

V

u(k)u(k+1)

Wu(k)

u(k)

Wu(k)

F

unit delay

z-1

h*T

W=G*inv(P)*Q'

F[Wu(k)-V-u(k)]

Fig.3: The architecture of the proposed discrete time

neural network

V

V

u(k)u(k+1)

Wu(k)

u(k)

Wu(k)

F

unit delay

x(k)

R

R

Q'u(k)

z-1

inv(P)

Q'

h*T

G*inv(P)

W=G*inv(P)*Q'

F[Wu(k)-V-u(k)]

Fig.4: The discrete system for solving the general

quadratic programming problem (1)

This system could be realized with a discrete time
neural network given in Figure 3. This architecture is
similar to the architecture of the continuous neural
network given in Figure 1, but instead of integrators
here we have m time delays. The system architecture
for obtaining the solution of the original problem (1) is
given in Figure 4.
The proposed discrete neural network for the case m=2
is given in Figure 5. It is a single layer structure that
contains m=2 unit delay elments.

u(k+1) u(k)

u(k)

u(k)

Wu(k)

V

V

R

Q'u(k)

Q'u(k)-R

y=Wu(k)-V-u(k)

Wu(k)

F(Wu(k)-V-u(k))

u(k)

V

R

x

u1(k+1) u1(k)

u2(k+1) u2(k)

x2(k)

x1(k)

Kinv(P)

x

Workspace x

u1

Workspace u1

u

Workspace u

K

W=G*inv(P)Q'

z

1

Unit Delay2

z

1

Unit Delay1

KT*dt

K

Q'

K

G*inv(P)

f(u)

F(y(2))

f(u)

F(y(1))

m

m

m

[R(1); R(2)]

Constant

Fig.5: The proposed discrete time neural network for

the case m=2

The proposed structure can be viewed as a common
model of discrete cellular neural network for solving
general quadratic programming problem.
The following theorems give conditions for global
stability and convergence of the proposed neural
network model.
Theorem 1: Given any initial point, there exists a
unique solution of (13). The equilibrium point of (13)
correspond to a solution of (1) and it is unique when
rank (A)=m and P is positive definite.
Proof: See [8], [9].

Theorem 2: If 2

2
T

h < the discrete sequence {λ(k)}

generated by the discrete time neural network (13) is
globally convergent to a solution of (1).
Proof: See [8], [9].

4 Simulation results
In this section we present simulation results for the
Neural Network architectures considered. We consider
the following simple example:

() 2
2

2
1,

2min
21

xxxf
xx

+= (17a)

subject to:
()
()
() 03

02
02

21

212

211

=−+=
≥−+=
≥−+−=

xxxa
xxxg
xxxg

 (17b)

For this example we have m=2, n=2 and p=1. The goal
function at levels 1,2,…,10 and the constraints of
problem (18) are given in Figure 6. The solution of this
problem is the point x* = (x1*, x2*) = (0.5, 2.5) as can
be easily verified analytically.

Fig.6: The goal function at levels 1,2,…,10 and the

constraints of problem (18)

The same solution of problem (17) is obtained by use
of standard function fmincon from Optimization
Toolbox of MATLAB®.

We utilize the SIMULINK® model of the continuous
Neural Network given in Figure 2, and have simulated
its behavior with time constants τ1=1 and τ2=1.
The simulation results for state variables (x1, x2) and λ 1
and λ 2 for initial conditions λ(0) =(λ 1(0), λ 2(0))=(4, 5)
are given in Figure 7 and Figure 8.

0 2 4 6 8 10 12 14 16 18 20
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

time

x

x1
x2

Fig.7: Simulation results for state variables x1 and x2

with initial conditions λ(0)=(λ 1(0), λ 2(0))=(4, 5) for the
continuous neural network model from Figure 2.

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time

la
m

bd
a

lambda1
lambda2

Fig.8: Simulation results for state variables λ1 and λ2

with initial conditions λ(0)=(λ 1(0), λ 2(0))=(4, 5) for the
continuous neural network model from Figure 2.

The speed of the transient depends on time constants.
The network settled down at the equilibrium point
which is the solution of the original problem (17).
We used the SIMULINK® model of the discrete
Neural Network given in Figure 5, and have simulated
its behavior for step size dt=0.001. The simulation
results for state variables (x1, x2) and λ 1 and λ 2 for
initial conditions λ(0) =(λ 1(0), λ 2(0))=(4, 5) are given
in Figure 9 and Figure 10.
The results are similar with this obtained by the

continuous model, but the general advantage of the
discrete model is that it is suitable for FPGA
implementations. The low complexity of the proposed
network is also advantage of the model considered.

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

x

time

x1
x2

Fig.9: Simulation results for state variables x1 and x2

with initial conditions λ(0)=(λ 1(0), λ 2(0))=(4, 5) for the
discrete neural network model from Figure 5.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time

la
m

bd
a

lambda1
lambda2

Fig.10: Simulation results for state variables λ1 and λ2

with initial conditions λ(0)=(λ 1(0), λ 2(0))=(4, 5) for the
discrete neural network model from Figure 5.

5 Conclusions
In this paper a discreet version of recently proposed
recurrent neural network for solving general quadratic
programming problems, for the case of both inequality
and equality constraints, is presented. The global
convergence and stability of this network is proved.
The presented network has lower complexity and it is
suitable for FPGA implementations. Simulation results
based on SIMULINK® models are given and
compared.

Acknowledgments
This work is supported by TU-Sofia project 452-8/
2004, “Design and simulation of Neural Networks for
solving Quadratic Programming Problems”.

References:
[1] A. Cichocki, R. Unbehauen, Neural Networks for

Optimization and Signal Processing, John Wiley &
Sons, Chichester-New York-Brisbane-Toronto-
Singapore, 1993.

[2] L. O. Chua and G. N. Lin. “Non-linear
programming without computation”, IEEE Trans.
Circuits and Systems, CAS-31, pp.182-186, 1984.

[3] M. P. Kennedy and L. O. Chua. “Neural networks
for non-linear programming”, IEEE Trans. Circuit
and Systems, Vol. 35, pp.554-562, 1988.

[4] W. E. Lillo, M. H. Loh, S. Hui and S. H. Žak. “On
solving constrained optimization problems with
neural networks : a penalty method approach”,
Technical Report TR EE 91-43, School of EE,
Purdue University, West Lafayette, IN, 1991

[5] Y. Xia, “A New Neural Network for Solving
Linear and Quadratic Programming Problems”,
IEEE Trans. on Circuits and Systems - Part I, pp.
1544-1547, 1996.

[6] Y. Xia, J. Wang, L. Hung, “Neural Networks for
Solving Inequalities and Equations, IEEE Trans. on
Circuits and Systems - Part I, vol. 46, pp. 452-462,
1999.

[7] D.G.Luenberger, Linear and Nonlinear
Programming, Addison-Wesley, 1984.

[8] V.M. Mladenov, F.H. Uhlmann, “Recurrent Neural
Networks for Solving General Quadratic
Programming Problems”, Proceedings of the 48.
Internationales Wissenschaftliches Kolloquium,
22.09-25.09, 2003, TU-Ilmenau, Germany.

[9] V.M.Mladenov, „On the recurrent neural networks
for solving general quadratic programming
problems”, Proceedings of the 7th Seminar on
Neural Network Applications in Electrical
Engineering, NEUREL 2004, University of
Belgrade, Serbia and Montenegro, 23-25
September, 2004, pp.5-9.

