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Abstract: - Scheduling and Production Planning problems are typically large in scale and fairly complex.
A decision support system for such an operations research (OR) problem makes a good case study to be
implemented using the web enabled, enterprise scale facilities of Java 2 Enterprise Edition (J2EE) and
Simple Object Access Protocol (SOAP). We propose mathematical programming models as well as design
and analyze certain specialized algorithms for special versions of these problems. In general, we use a
powerful grade Mixed Integer Programming (MIP) solver, which we have web-enabled in our distributed
decision support system, to solve the MIP models created by our system. Reusing web infrastructure can
drastically lower the cost of setting up these application and allows us to reuse all kinds of tools originally
built for the web.
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1 Introduction

Scheduling and Production Planning problems are
typically large in scale and fairly complex. Schedul-
ing problems, concern the allocation of limited re-
sources over time to perform some tasks to satisfy
certain conditions. Scheduling problems exist almost
everywhere in real-world situations, especially in the
manufacturing industries. A decision support system
for such a operations research (OR) problem makes a
good case study to be implemented using the web en-
abled, enterprise scale facilities of Java 2 Enterprise
Edition (J2EE) and Simple Object Access Protocol
(SOAP) [1, 7].

A bearings manufacturer produce a large number
of bearings of different kinds. It operates under many
constraints, some of which involves the utilization
of resources, productivity, heat treatment for bear-
ings, downtime of machines and the target price -
the price of the product specified by the customer.
After the heat treatment process the bearings must
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be assembled. Hence, it requires to find out the op-
timum number of different bearing types for the heat
treatment schedule. We have modeled two Mixed In-
teger Programming formulation’s for the Scheduling
in Bearing Heat Treatment Plant.

In this paper, we investigate a few variations of
scheduling problems arising on the shop floor of
a heat treatment plant of a bearings manufacturing
industry. These problems arose in our collabora-
tive efforts with the industry NRB Bearings Limited,
Mumbai. We propose mathematical programming
(in particular, mixed integer programming (MIP))
models as well as design and analyze certain special-
ized algorithms for special versions of these prob-
lems. However, in general, we use the powerful,
industry-grade MIP solver such as FortMP[4], which
we have web-enabled in our distributed decision sup-
port system, as the solver in the back-end to solve the
MIP models created by our system. (FortMP is an in-
dustrial strength large scale optimization solver sys-
tem developed by CARISMA, Brunel University as
a research tool which is also used for teaching with
many industrial applications [4]).
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We need to choose a software platform that has
a good support for distributed computing, concur-
rency, transaction, security, component based design,
component based deployment, rapid development of
interactive applications etc. Therefore, we decided to
develop a prototype of this application using Enter-
prise Java Beans (EJB) on Java 2 Enterprise Edition
(J2EE) platform and SOAP based Web Services.

Our Prototypical implementation is approximately
5,000 lines of J2EE code and 1000 lines of code for
the deployment of Web Services. This was imple-
mented and deployed on the free, open source JBoss
server running on x86-linux platform [3]. Also, we
use Apache SOAP implementation for the SOAP
specifications [1]. FortMP solver is available as add-
on to Matlab [4]. Tomcat Server is used as the Web
Services container.

The roadmap of this paper is as follows. In sec-
tion 2 we model the scheduling problems in our con-
text and provide algorithmic strategies for the same.
Later in section 3, a brief overview of our software
system and the simulation results are provided. We
end the paper with brief conclusions and a bibliogra-
phy.

2 Problem Models and Solutions

In this section, we have modeled two Mixed Integer
Programming Formulations (MIP) for the Schedul-
ing Problem at Heat Treatment Plant.

2.1 The General Model

2.1.1 The Problem Specification

Let M1,M2,...,Mk,... be the machines available at
the heat treatment plant andMd1, Md2,...,Mdl,...
be the different modes of treatments which bearing
types require. Examples of basic bearing types are
subtypes of Cage bearings, Needle bearings, Ring
bearings and Shaft bearings. Composite bearings
have these as their constituents. Note that it may not
be possible for all modes to be run on all machines.
Let Tk denote the time available on machineMk for
processing. The different types of basic bearings that
need to be processed are denoted byBi.

In this general setup we assume that a bearing type
may be possibly treated in several different modes on
several different machines. These basic bearings are

to be assembled to produce composite bearings. We
denote the orders byOj . An order from a client is
a collection of (bearing type, quantity) pairs (called
“suborder”). For example an order from a client
could beOrder 1 : 7 units of Cage A, 20 units of
Shell B, 10 units of Shell C.

The pair(machine,{list of modes for given ma-
chine}) uniquely determines the machine and mode
specifications i.e, the specified machine will work
under these modes. The pair(bearing type,{list of
modes for given bearing type}) uniquely determines
the bearing type and mode specifications i.e, the
specified bearing type will work under these modes.

2.1.2 Mixed Integer Programming Formulation
of the Problem

In this formulation, the suffixesi, j, k and l will
consistently be associated with the bearing typeBi,
orderOj , machineMk and modeMdl respectively.
Let Cij be the quantity of bearing typeBi required
in orderOj .

Let bikl denote the duration of a session of bearing
typeBi in modeMdl on machineMk. That is, for
every bearing typeBi, every machineMk and mode
Mdl, there must be a fixed duration of processing
time bikl per session. Letaikl denote the quantity
of Bi that can be processed in modeMdl on ma-
chineMk in a session. Letxikl denote the number
of sessions required for processing bearings of type
Bi in modeMdl on machineMk. Also, lety be the
makespan. ie., the completion time of all the jobs in
the system. The constraints are as follows:
Time Constraint: For eachMk, the amount of time
taken by the allocation in a machine should not ex-
ceedTk. That is,

∑
i,l bikl.xikl ≤ Tk, ∀k.

Makespan Constraint: Makespan must be atleast
as large as the processing time assigned to any ma-
chine:y −

∑
i,l bikl.xikl ≥ 0, ∀k.

Demand Constraint: The problem requires an allo-
cation which will saturate the demand for resources.
The total requirement forBi is

∑
j Cij . Hence, we

have the constraint,
∑

k,l aikl.xikl ≥
∑

j Cij , ∀i.
Since the heat treatments are based on chemicals

it may be possible that the treatment turns ineffective
after a certain period of being in use. Hence we have
an upper bound for the number of sessions. Like-
wise, for effective utilization of resources a lower
bound on this duration may be desirable.
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Also xikl ≤ u, u is an upper bound
xikl ≥ 0 andxikl are integers.

Objective Function : let pikl denote the processing
cost per session for bearing typeBi on machineMk

in modeMdl. The objective function will be allo-
cation of jobs on machines-mode combinations that
cost lesser as well as minimize the makespan.

min y +
∑
i,k,l

pikl.xikl

2.2 A Specialization of the General Model

The following model is a specialization of the gen-
eral model discussed above.

2.2.1 Problem Specification

M1,M2, ...,Mkmax are identical machines. Each
machine is capable of operating in any mode. Each
bearing type can be processed by only aunique
mode (however, on any machine). Each session in
any mode on any machine has the same duration,
which we will conveniently assume to beone unit
long. A charge ofBi is the quantity of that bearing
type that can be processed in a session.Ci is the
number of charges of the typeBi to be processed.s
and2s, respectively, are the lower and upper bounds
of the number of sessions in a shift.Tk is the number
of sessions available on machineMk.

We shall assume that the scheduling/resource al-
location problem is of large enough scale. In partic-
ular, we shall assume the following.Tk ≥ 6s ∀k,
Ci ≥ 6s ∀i,

∑
Tk ≥

∑
Ci and that the number

of machines is less than or equal to the number of
different basic bearing types. These are reasonable
assumption since we are not worried about the time
complexity of small scale problems. The problem
that we wish to solve is to check for feasibility of as-
signing shifts of acceptable lengths (within the spec-
ified bounds) such that all bearings are processed in
the specified units of time on all the machines. We
also wish to output such a feasible schedule.

The following algorithm provides a feasible solu-
tion for the problem. Though much simpler that the
general problem, it is not really intuitive in nature.
Thus, even though scheduling problems may be sim-
plified, an optimal solution is not always evident.

2.2.2 Algorithm

Initialize { avail(i) = Ci for all bearing typesBi;
tavail(k) = Tk for all machinesMk; i = 1;

}
for k = 1, ..., kmax {

if (avail(i) ≥ 6s) {
allocate2s charges ofBi to Mk;
tavail(k) = tavail(k)− 2s;
avail(i) = avail(i)− 2s;
markBi as in the “cap” of schedule

of machineMk.
}
else if (4s ≤ avail(i) < 6s) {

allocate2s charges ofBi to Mk;
allocate2s charges ofBi+1 to Mk;
markBi andBi+1 as in the “cap” of schedule

of machineMk.
tavail(k) = tavail(k)− 4s;
avail(i) = avail(i)− 2s;
avail(i + 1) = avail(i + 1)− 2s; i++;

}
}
k = 1;
for i = 1, 2, ..., imax {

let kl be the largestk′ (could bek − 1) such that∑kl
k′=k tavail(k′) ≤ avail(i)

allocatetavail(k′) charges ofBi to Mk′ for
k′ = k, .., kl

avail(i) = avail(i)−
∑kl

k′=k(tavail(k′));
k = kl+1; if (avail(i) == 0) break;
if (avail(i) < s) {

allocateavail(i) charges ofBi to Mk;
swaps− avail(i) charges ofBi in Mk−1 and

s− avail(i) charges of someBj that is in
the “cap” of bothMk andMk−1 from Mk.

tavail(k) = tavail(k)− avail(i);
} else{

allocateavail(i) charges ofBi to Mk;
tavail(k) = tavail(k)− avail(i);

}
if ( tavail(k) < s) {

movetavail(k) charges of someBj that is in
the “cap” of bothMk andMk+1 from Mk+1

to Mk.
tavail(k + 1) = tavail(k + 1) + tavail(k);
k++;

}
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}

Proof that the schedule is feasible:Note thatTk ≥
6s ∀k andCi ≥ 6s ∀i and the number of machines
less or equal to the number of basic bearing types.
The “cap formation” phase clearly ensures that for
every adjacent pair of machines, there exist at least
2s sessions which are scheduled to process bearings
of the same type. After the “cap formation” phase,
there exists at least2s units of each bearing type.

The “non-cap” phase of the algorithm allocates the
remaining units of bearing types in such a manner
that for each bearing typeBi, the remaining units
of bearings of typeBi are scheduled on contiguous
sequence of machines such that with the possible
exception of only the first and the last machines in
this sequence, the non-cap portion of the machines is
completely filled with bearings of typeBi.

Let the non-cap portion ofBi (ie. the units ofBi

not scheduled in the cap of any of the machines) be
scheduled on the contiguous sequence of machines
Mk to Mk′ . As the non-cap portion of each machine
is at least6s − 4s ie. 2s, the machines intermediate
betweenMk to Mk′ satisfy the shift length require-
ment.

Thus for each bearing typeBi, only the first and
the last machines in the sequence, ie. possibly only
Mk andMk′ can have an infeasible schedule for the
non-cap portion ofBi in them. That is the number of
units ofBi in the non-cap portion is less thans.

We show that the algorithm ensures that this does
not happen. First we handle the case ofMk′ facing
the allocation of less thans units ofBi, ie. the case
avail(i) < s. Note that in this case, the previous
machine in this sequence (that is, machineMk′−1)
has at least2s − avail(i) units of Bi, ie. at least
s − avail(i) units ofBi more than what is required
for feasibility. Furthermore, the cap of the machine
Mk′ has2s units of some bearing typeBi′ that is
also in the cap ofMk′−1 thus swappings− avail(i)
units ofBi from the non-cap portion ofMk′−1 with
s− avail(i) units ofBi′ from the cap ofMk′ would
satisfy the shift length constraints.

Next, it remains to handle the case ofMk (that is
the first machine in the above mentioned sequence)
facing the allocation ofBi to less thans sessions re-
maining in the non-cap portion. However, it can be
seen that the algorithm does not permit this to hap-
pen, as whenever the number of sessions remaining

in the non-cap portion of machineMk is less thans,
these sessions are filled up by moving the required
number of bearings of some typeBi′′ that is present
in the cap of bothMk andMk+1, from the cap of
Mk+1 to these sessions onMk. This lengthens the
number of sessions ofBi′′ on Mk without reducing
the number of sessions ofBi′′ onMk′′ belows. For-
tunately, the modified cap of machineMk+1 does
not present a problem as the dwindled cap portion
of machineMk+1 would not need to donate any fur-
ther portion of it, for the reason thatMk+1 would be
used for scheduling the non-cap portion of the next
bearing type and thus would have plenty of these to
allocate sessions to.q.e.d

2.3 Vector Job Scheduling

Here we consider another specialized scheduling
problem that considers “jobs” that have “compo-
nents” that can only be processed on machines ded-
icated to unique different components. For exam-
ple, such a job represents a certain quantity of com-
posite bearings whose components are proportionate
amount of quantities of its basic constituent bearing
types. For the sake of simplicity of the presentation
of the ideas, we assume that all such jobs have ex-
actly two components, processed by machine 1 and
machine 2 respectively. Machine 1 processes the first
components and the second machine processes the
second components. The specified quantity of the
composite bearing is available only after its com-
ponents are processed on the respective machines.
Therefore, the completion time of a job may be de-
fined naturally as the maximum of the completion
times of the components. Therefore, a natural opti-
mization criterion is to schedule (sequence) the jobs
so as to minimize the sum of the completion times
of the individual jobs (this would minimize average
completion times of the jobs). We solve this problem
usingPotts’ formulationand alternately using greedy
approaches based onsum-normandmax-norm(for
further details see [8]).

2.3.1 Definitions

We are given two machinesM1 andM2. Also given
is a collection of jobsJi = [ai, bi], i = 1, 2, ..., n,
where the first componentai has to be processed on
M1 and the second componentbi has to be processed
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on M2. A schedule is given by the permutation of
[1, 2, ..., n], say,Π. Completion time ofJi on M1

is defined as
∑

Π[j]=1,...,i aΠ[j]. Similarly, the com-
pletion time ofJi is defined onM2 in terms ofb’s
andΠ. The completion time ofJi onM1 andM2 is
defined as the maximum of its completion times on
M1 andM2. The total (cumulative) completion time
of the schedule is the sum of the completion times of
all the jobs.
Objective: The objective is to find a permuta-
tion Π of {1,2,...,n} such thatcost(Π), which is,∑n

i=1 max{
∑i

j=1 aΠj ,
∑i

j=1 bΠj} is minimum.

2.3.2 Potts’ formulation [6]

One can extend, in a straightforward manner, a for-
mulation due to Potts (see [6, 8] for a known appli-
cation of Potts’ formulation) for a single machine
scheduling problem, to get the following. Given a
collection of jobsJi = [ai, bi], i=1,2,· · ·,n. Let Ci

be the completion time of jobi andn be the number
of jobs. Also letxij = 1 if job i precedes jobj and0
otherwise. Thus an MIP model of our problem based
on Potts’ idea is given bymin

∑n
i=1 Ci subject to

the constraints,

xij + xji = 1, 1 ≤ i < j ≤ n

xij + xjk + xki ≤ 2, 1 ≤ i < j < k ≤ n

Cj ≥ aj +
∑

1≤i≤n, i6=j

xijai, j = 1, 2, ...., n.

Cj ≥ bj +
∑

1≤i≤n, i6=j

xijbi, j = 1, 2, ...., n.

Here the variablesxij (i 6=j, 1≤ i, j ≤n) are binary
variables andCi ≥ 0 (i=1,· · ·,n).
In this Potts’ formulation, forn jobs, we usen2 vari-
ables andnC2 + 2 ∗ nC3 + 2 ∗ n constraints.

2.3.3 Greedy Strategies: sum-norm and max-
norm

Let Π denote the permutation of jobs that orders jobs
in the increasing order of theirsum-norms. That
is, aΠ1 + bΠ1 ≤ aΠ2 + bΠ2 ≤ · · · ≤ aΠn +
bΠn . Then we callΠ as the sum-norm based
greedy ordering. Similarly, ifΠ′ is a permutation of
{1, 2, · · · , n} max{aΠ1 , bΠ1} ≤ max{aΠ2 , bΠ2} ≤
· · · ≤ max{aΠn , bΠn}, thenΠ′ is calledmax-norm
based greedy ordering.

Figure 1: Our Decision Support System

Theorem 2.1 For the problem of scheduling 2-
dimensional jobs to minimize total completion time,
the sum-norm based greedy ordering strategy finds a
schedule whose cost is within 2 times the optimal.
(Proof:) Let Π∗ denote the permutation that or-
ders jobs in the increasing order of their sum-
norms. Let Πopt denote an optimal ordering.
We use the following notation. suml(Π) de-
notes

∑l
i=1(

∑i
j=1(aΠj +bΠj )) andcostl(Π) denotes∑l

i=1(max{(
∑i

j=1 aΠj ,
∑i

j=1 bΠj )}).
Informally, letcostl(Π) denote the cumulative com-
pletion time elapsed upto thelth job.
Clearly,costn(Π) = cost(Π).
We also have,costl(Π∗) <= suml(Π∗) and
costl(Πopt) >= suml(Πopt)/2 >= suml(Π∗)/2.
So, costl(Π∗) <= 2 ∗ costl(Πopt). For i = n, we
getcost(Π∗) <= 2 ∗ cost(Πopt). q.e.d

Similarly one can also establish the same perfor-
mance guarantee for max-norm based greedy order-
ing strategy.

3 Architecture of Our Distributed
System

Our present decision support system has three tier
architecture where the EJB server-clients run on two
different desktops, but a third desktop hosts web ser-
vices integrated with the FortMP solver.

Our EJB client has the following features: mul-
tiple end-users supported, security and concurrency,
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transaction management, distributed framework, in-
tuitive GUI, plugging of deployable components
supported.

Due to the feature of our EJB based system sup-
porting pluggable component, we managed to inte-
grate the MIP model component which generates the
MPS file describing the MIP model for the given set
of jobs/orders and calls the web services further to
solve the MIP problem with the help of FortMP.

The jobs/orders are submitted through EJB client.
The jobs/orders information will be stored in the
Hypersonic database that is embedded in the JBoss
server. Later the MPS file is created using the prob-
lem data obtained from the above database. Using
the SOAP attachment feature of web services the
MPS file is sent over eventually to the FortMP solver
whose solution is also received back as a file using
SOAP attachment feature.

In the server side, web services which perform the
task of transferring files and invoking Matlab session
using JMatLink [5]. JMatLink provides program-
matic connectivity between Java and Matlab. The
MIP problem gets solved by FortMP solver. Server
side also includes a matlab script which is called
through JMatLink with necessary parameters and it
generates the solution and log file as the output.

3.1 Results Comparison for Vector Job
Scheduling

Next, we compare the results ofPotts’ formula-
tion with sum-normand max-normbased greedy
strategies for the Vector Job Scheduling problem.
We have experimented with five problems of dif-
ferent size. Table 1 shows the comparison of total
completion times ofPotts’ formulationand greedy
strategies based onsum-normandmax-norm. Here,
n denotes the number of jobs.
Table 1
Comparison of total completion times

n Potts’ formulation sum-norm max-norm
100 26458 27324 27279
200 109037 115350 111296
300 226090 229111 234529
400 424683 441359 434975
500 619845 624419 641497

From the above table, it is observed thatPotts’ for-
mulationperformed well compared tosum-normand
max-normbased greedy strategies.

4 Conclusion

The problem of scheduling ball bearings at a Heat
Treatment plant is large scale and complex. Sev-
eral mathematical formulations were formulated and
solved using the powerful solver through Web Ser-
vices. Special efficient algorithms were also devised
and analyzed. Our EJB/SOAP based decision sup-
port system allows efficient security, concurrency,
transaction management and persistence at a little
extra programming effort. Further developments or
generalizations, as and when required, should also
be easy since EJB is scalable and maintainable. The
business logics of various scheduling heuristics can
be used as “plug-ins”.
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