
Real Time Hardware Vision System Design

Pedro Cobos Arribas
Departamento Sistemas Electrónicos y de Control

Universidad Politécnica de Madrid.
E.U.I.T.Telecomunicación, Km 7, Ctra Valencia, 28031 (Madrid)

España

Abstract: This paper describes an electronic system designed for real-time vision applications. The system will
allow the development of low-complexity tasks, such as obstacle detection, at very high frequencies. This
makes it useful for robotic applications and control systems in real time (up to 25 images per second).
Its design has taken into account low-cost and flexible modular solutions that can be applied in research
laboratories or used with engineering students in order to make real time image process practices.

Key-Words: Vision, Real time processing, optical flow, robot systems, Hardware systems, FPGA.

1 Introduction
This paper describes the materialization of the
hardware section of my PhD [1]. The objective of
this work was the development of hardware
solutions to be able to calculate –in real time– the
optical flow of real images. The second objective
was to generate their optical invariants by building
the components of a system that could be used as a
vision module in a robot. These objectives will be
reached through the different tests that will be
carried out in the next stage.
These tests will include the calculation of the time
to impact from the data provided by the optical
flow, the log-polar transformation of input images,
and the calculation of the optical flow.
Alongside these experiments, a methodology will
be developed in a vision laboratory. This will
measure the theoretical values of the algorithm
simulation by comparing in real time the values
obtained by applying the images to the hardware
system.
The reason for the development of this system is
the lack of one that proves the validity of the
algorithms without having to develop a different
testing system for each case, as it is happening at
the moment. This item will be described in next
section.

1.1 Vision System
The different blocks of the active vision system can
be seen in Fig. 1.
The actions required to move the camera to the
desired region are calculated from the data

provided by the images of the scene. The image
processing is then constituted by the following: the
storage of several consecutive images, the
execution of the log-polar transformation to
compress the data, and finally the extraction of the
optical flow which contains relevant information
for the system.

2 Previous work
In [2-5], [6], some implementations of these blocks
are described. The structure of all of them is the
same (Fig. 2), where an easy interconnection and
real time operation are provided. A little hardware
block can do its work quickly than a larger one and
many of these blocks can operate in a parallel mode
if the intermediate results are accessible. The input
and output memories, that can be accessed at the
same time from the source and the target systems,
are the more important parts of this hardware
structure. The other element is always a FPGA (or
several), that holds the vision algorithm and the
memories addressing task. Depending on the

Camera
Images CCD

camera
Frame
grabber

Camera
control

 Actions
 calculus

 Optical
Flow

Fig. 1 Blocks diagram of the vision system.
The frame grabber is not necessary at
the moment since we are using CMOS
digital cameras.

algorithm, the complexity of the FPGA design will

change from very hard constraints for the optical
flow calculation to a little effort in image
transformation algorithms, as in the log-polar

implementation. At Fig.3 an implementation of the
first type is shown and at Fig.4 another of the
second type cited. Only at a first look the
complexity required can be noted. All the original
algorithms, [7-9], have served to develop the
hardware approaches.

Nevertheless, the system structure is the same and
if required, several systems could operate at a
parallel way.

3 Hardware vision system description
All the described processing takes place in the
hardware vision system based on FPGA,
represented in Figs. 5, 6, 7 and which will be
described next.

The system components can be modified by using
the programmable logic circuit capabilities. For
instance, you can choose whether or not to use the
above mentioned transformation, which has a
higher resolution in the attention region (fovea) and
a lower resolution in the peripheral region, as in
biological vision systems. You can also choose to
store only two images, perform an internal buffer to
do an image filtering, etc. Therefore, previous tasks
can easily be repeated, as well as new ones, [10-
12]. For these reasons we focussed greatly on the
flexibility of the system. Also, we have intended to
reduce as much as possible the system dimensions
so that it can be assembled on real systems.
Therefore, we have designed the printed circuit
assembly with six faces (two planes for ground and
power connections and four for routing signals) and
a fabrication class of 6.
The vision system has the following input options:
- A low-cost, monochrome, digital camera
(OV7120) [13] with a 640 x 480-pixel resolution,
which can be directly connected to the vision board
using a 32-pin flat cable female connector.
- An IEEE-1394 camera, which can be connected
using a (Firewire) input connector. This is for
applications with more features and higher costs.
This option allows the interweaving of the vision

Start_1

MAIN BLOCK

Co_sec_mem Final_Frame

 Start

 Start

BASE GENERATOR

 End_Pixel

 BASE Base_OK

DATA BASE Base_OK

GRADIENT CALCULATION

Gradient End Grad

 BASE Base_OK

 End_Lapla

LAPLACIANS CALCULATION

Laplacians

Flow vectors

 End_Pixel End_Frame Flow vectors

End_Lapla

OPTICAL FLOW CALCULATION

Laplacians

End_Grad

 Gradient

Input

Memories

Output
Memories

 Start_1

SEQUENCER

 Co_sec_mem

ImageLoad

IMAGES

Fig. 3 Blocks diagram of a FPGA implementa-
tion of a differential optical flow
extraction algorithm.

INPUT
MEMORY

OUTPUT
MEMORY

ROM
MEMORY

FPGA

Fig. 4 Blocks diagram of the Log-polar FPGA
implementation

FPGA HARDWARE
PROCESSING

INPUT
MEMORIES

OUTPUT
MEMORIES

Fig. 2 Hardware data processing structure

USB controller

CONNECTORS

Expansion

Two ports
FIREWIRE
controller

VRAM1

VRAM2

VRAM3

VRAM4

EDORAM

CENTRONICS

USB

Fig. 5 Components of the hardware vision
system

system in applications that require the processing of
images that reach the camera at high speeds.
- Another identical block output to break down
complex processing into several phases. As a result,
each system runs in parallel parts of the operations,
and a complex algorithm can be completed using

Fig.6 Upper view of the vision system.

Fig.7 Lower view of the vision system. In
order to reduce the dimensions of the
printed circuit board, the components
have been placed on both sides of the
board.

simple blocks, with each block hosted on a vision
board.
The above input options can be connected directly
to the FPGA. However, they are normally
connected to several memories (typically three

input memories) in order to store consecutive
image information. These memories are frame
buffers, that is, memories used to store a full image,
of sequential access, especially the AL422 [14],
with two stand-alone input/output ports.
This is so that they can be written and read at
different speeds. They have a capacity of 3Mbits
and therefore the images can be easily stored in
different formats.
This information is processed by an FPGA
manufactured by ALTERA [15], (model 20k100)
which addresses the input memories, performs the
required calculations and downloads the results on
a dual-port memory. It has the same features as the
input memories and is accessible to other systems.
The system can be adapted to multiple situations
since it is possible to reconfigure the input pins in
different ways.

The processing outputs can be obtained from
several connectors:
- A flat cable male connector, which is the male
version of the female input connector, to be able to
connect several systems in parallel so that the
system outputs to the connector or the output
memory. It is configured with a signal organization
identical to the one in the system input.
- A USB connector to monitor the processing
output from a PC. To do this, it is necessary to have
a specific controller (OV511+) from the same
manufacturer as that of the cameras.
- A Firewire connector to read the results from this
format. The communications with this standard are
performed by a Texas Instruments integrated circuit
–TSB3A82– which controls the three levels of the
IEE1394 protocol.
Alongside these input/output connections, another
10-pin connector is required for the programming
of the FPGA from a PC, through a cable connected
to its parallel port. This programming can be stored
in a non-volatile configuration memory, included in
the system, so that there is no need to re-
programme every time the power is shut down.

The system power supply (5V, 3.3V y 2.5V) can be
obtained from either the USB connector, Firewire
connector or via a connection to a 5V external
power supply source.
In Figs 8 and 9, you can see the layout of a camera
connected to the vision system, and of two systems
operating from a camera. These are examples of the
system operational modes.

These can deal with complex issues, by breaking
down the tasks so that they can be performed in
parallel in several systems with the same structure:
the output of the first is the input of the second, and
so on, until the last one, where the global result of
the processing could be read by a host processor.

Fig. 8 Detail of the interconnection between
the camera and the vision system. In
reduced size applications, it can be
installed directly onto the board
connector.

Fig. 9 Detail of the interconnection between

two vision systems and a camera. By
using flat cable connectors, you can
install the modules required to
implement the vision algorithm.

4 Conclusion and future
developments
The original contribution of this work is the
building of a modular hardware architecture, which
allows the interconnection of the different modules,
whose outputs can be monitored and whose
parameters can be programmed by a globally
controlled system. The whole system goal is to
operate at real time, with an operating rate of 25
frames/second. This requires that every element
must operate at a very high frequency.
We considered it was necessary to create the
correct modular functioning of the vision system
components and also the possibility of being
controlled and monitored by a higher-level
hierarchy system. Even if we were incapable of
obtaining results in real time, this system could
track and adjust each components operation.
Therefore, all the modules have a dual-port output
memory, which can be read by the adjacent module
and by other hardware that requires the information
it generates. Normally this is the PC or workstation
which, from the visual information, can calculate
new positions for the camera or generate the
required changes to adapt to a new situation of the
system.
For this last objective, the modules must have their
control/reconfiguration inputs accessible.
For example the number of iterations and the size
of the window (for the algorithms calculating the
optical flow through gradient and correlation
techniques respectively). If there has been a
reconfiguration, it will be necessary to wait for a
period of time before obtaining the correct results.
Likewise, when the system starts working, there
will be a latency period in which the images are
loaded into the input memories and all the blocks
operating in parallel have their output data ready.
It is maintained an opinion, which has followers
and detractors among researchers in the vision field
–as proved by the critiques or good words received
in the different international conferences that have
been attended [2-5], [10-12]–, the hardware
implementations of vision algorithms will be very
important in real applications. This is due to the
possibility of having large complex ASIC, and
larger and faster FPGA, together with the gradual
sophistication and increase of the capacity of the
all-purpose processors or the DSP processors. The
research done intends to cover an area of the
important developments in hardware for artificial
vision.

Therefore, this research does not intend to be a new
application for artificial vision, but a hardware
architecture that allows the implementation of
vision algorithms by trying to generate vision
systems that include and leverage different
hardware elements, as real-time special solutions.
These will complement the typically programmed
systems.
During this research, we have found that many of
the techniques based on the calculation of the
optical flow, like the ones used here, are very
limited in real-time applications, where it is
necessary to reduce the dependency on the
restrictions derived from the projection process at
the image level. However, by reaching the
processing speeds indicated and using elements
accessible to any researcher (such as the FPGA) the
work will be relevant. This is especially true in
robotic applications where the vision is used by the
robots to avoid obstacles, follow paths or to
perform any other required task. Another
application where vision systems could be key is in
the development of help systems for driving
vehicles to avoid collisions with other vehicles or
other types of road traffic accidents.
The future development of this investigation can be
summarized in three points:
- Inclusion of the developed vision module in a
robotic head with motors to control the camera(s)
with three freedom degrees of movement, as well
as to generate saccadic movements, nystagmus and
other biological behaviour to be able to study in
detail the effects on the images. These movements
set the camera on the desired region, so that more
information can be obtained from the scene, and the
volume of data required for the processing can be
reduced.
- Use of the vision module on motorized vehicles
so that their movement can be controlled according
to the visual information received.
- Development of other solutions that include
digital signal processors (DSP) and programmable
logic devices in order to create other vision
applications. This new hardware system would
perform functions that require intensive-data
processing with one or several FPGAs, and
mathematical functions, or data-processing, with
DSP processors. For example, the LSP [16] system
could be used since it allows faster performance
implementations by being able to be connected
directly to the applications developed in Matlab or
Simulink, which are currently in common use.

Many of the future results depend greatly on the
electronic technology evolution, which in coming
years will be able to provide integration levels,
which were inconceivable in recent times,
including microprocessors with a high-level
parallelism, and with high-capacity and highspeed
FPGAs. It is believed for us that with this fast
calculation potential, vision algorithms and
dedicated hardware will be developed and
improved so that tasks that are apparently simple
(such as obtaining optical flow to be able to
generate the structure of an image from movement
data) stop being an extremely complex issue [17],
which vision scientists have been investigating in
the last 25 years.
We hope that the hardware solutions provided in
this paper are helpful in our scientific effort to find
an answer to a problem that nature solved a long
time ago.

References:
[1] Cobos, Pedro. “Arquitectura hardware para la

extracción de invariantes ópticos, a partir del
flujo óptico, en tiempo real“. Tesis Doctoral,
Universidad Politécnica de Madrid, 2001.

[2] Cobos P., Monasterio F., “Fpga
implementation of the Horn & Schunk Optical
Flow Algorithm for Motion Detection in real
time Images”. Dcis`98 Proceedings, XIII
Design of circuits and integrated systems
conference, pp: 616-621. (1998).

[3] Cobos P., Monasterio F., “Fpga
implementation of a Log-polar Algorithm for
real time Applications”. Dcis`99 Proceedings,
XIV Design of circuits and integrated systems
conference, pp: 63-68. (1999).

[4] Cobos P. , Monasterio F., "FPGA
implementation of Camus correlation Optical
Flow Algorithm for real time images." Vision
Interface Proceedings VI2001, 14th
International Conference on Vision Interface,
S.S. Beauchemin, F. Nouboud and G. Roth,
Editors Canada, pp: 7_9 (2001).

[5] Cobos P, Monasterio F. "FPGA
implementation of Santos_Victor optical flow
algorithm for real_time image processing: a
useful attempt," VLSI Circuits and Systems,
José Fco. López, Juan A. Montiel_Nelson,
Dimitris Pavlidis, Editors, Proceedings of
SPIE Vol. 5117 (2003) (23_32).

[6] http://www.sec.upm.es/pcobos/

[7] Barron, J.L., Fleet, D.J., Beauchemin, S. S.,
“Systems and Experiment Performance of
optical flow techniques“. International
Journal of Computer Vision, Kluwer
Academic Publishers. Vol. 12, Nº 1, pp: 43-
77. (1994).

[8] Horn, B., and Schunck, P., “Determining
Optical Flow”. Artificial Intelligence, Vol 17,
pp: 185-203. (1981).

[9] Camus, T., “Calculating time-to collision with
real-time Optical Flow”. SPIE Visual
Communications and IMAGE Processing. Vol
2308, pp 661-670. (1994).

[10] Cobos, P., Monasterio F., "FPGA Based
Development Vision System". Dcis`2001
Proceedings, XVI Design of circuits and
integrated systems conference, pp: 322-326.
(2001).

[11] Cobos, P., Monasterio F., "FPGA Board For
Real Time Vision Development Systems".
Proceedings of the ICCDCS 2002, 4th IEEE
International Caracas Conference on
Devices, Circuits and Systems. 0-7803-7381-
2/02/$17.00 © 2002 IEEE T021 pp:1-6
(2002).

[12] Cobos, P., "Real Time Hardware Vision
System Applications: Optical Flow and Time
to Contact Detector Units". Proceedings of
the ICCDCS 2004, 5th IEEE International
Caracas Conference on Devices, Circuits
and Systems. 0-7803-8777-5 © 2004 IEEE ,
pp:281-288 (2004).

[13] www.ovt.com
[14] www.averlogic.com
[15] www.altera.com
[16] LSP Signal Processing. http://www.signal-

lsp.com (2005).
[17] Chellapa, R., Quian, G, and Srinivasan, S.

"Structure from motion: sparse versus dense
correspondence methods". IEEE Proceedings
1999 International Conference on Image
Processing, Vol 2, pp:492_499, 1999.

APPENDIX: ALTERA´S APEX DEVICE
FAMILY
The capacity of APEX™, the programmable
logic device family from ALTERA, ranges

from 30,000 to 1.5 million system gates and
uses technologies of 0.22-µm, 0.18-µm and
0.15-µm. Its architecture, shown in Fig. 10, is
suited for solutions SOPC (system-on-a-
programmable-chip), allowing designers to use it
easily in a broad range of applications, which
combine logic and memory needs, as is the case
with the present vision system.
The device used in this application belongs to the
20k device family, more specifically the 20k100
TC144-3, with a power supply of 2.5V and an
equivalent capacity of 263,000 system gates,
together with 101 input/output pins. The system
can use IPs designed by Altera or by third-parties,
as well as different types of memories, such as

ROM, RAM, dual-port and FIFO.
Its CPLD-type architecture is based on fine grain
logic blocks which can be grouped to build more
complex ones. The interconnection resources are
predefined on the chip so that the compilations are
more efficient. Furthermore, since the configuration
is based on RAM technology –to take up less
space– it is necessary to include in the system a
FLASH memory module, EPC2, so that the system
can keep a stable configuration once the application
has been debugged.
In order to be able to programme the FPGA, the
free broadcast environment, “Max + plus2”, and the
programming cable “Bite-blasterMv” manufactured
by ALTERA are used.

Fig. 10 Apex 20k device family: Solutions to
build full systems in a programmable
chip.

