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Abstract: This paper describes an electronic system designed for real-time vision applications. The system will 
allow the development of low-complexity tasks, such as obstacle detection, at very high frequencies. This 
makes it useful for robotic applications and control systems in real time (up to 25 images per second). 
Its design has taken into account low-cost and flexible modular solutions that can be applied in research 
laboratories or used with engineering students in order to make real time image process practices. 
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1  Introduction 
This paper describes the materialization of the 
hardware section of my PhD [1]. The objective of 
this work was the development of hardware 
solutions to be able to calculate –in real time– the 
optical flow of real images. The second objective 
was to generate their optical invariants by building 
the components of a system that could be used as a 
vision module in a robot. These objectives will be 
reached through the different tests that will be 
carried out in the next stage. 
These tests will include the calculation of the time 
to impact from the data provided by the optical 
flow, the log-polar transformation of input images, 
and the calculation of the optical flow. 
Alongside these experiments, a methodology will 
be developed in a vision laboratory. This will 
measure the theoretical values of the algorithm 
simulation by comparing in real time the values 
obtained by applying the images to the hardware 
system. 
The reason for the development of this system is 
the lack of one that proves the validity of the 
algorithms without having to develop a different 
testing system for each case, as it is happening at 
the moment. This item will be described in next 
section. 
 
 
1.1  Vision System 
The different blocks of the active vision system can 
be seen in Fig. 1.  
The actions required to move the camera to the 
desired region are calculated from the data  

 
provided by the images of the scene. The image 
processing is then constituted by the following: the 
storage of several consecutive images, the 
execution of the log-polar transformation to 
compress the data, and finally the extraction of the 
optical flow which contains relevant information 
for the system.  
 
 
2  Previous work 
In [2-5], [6], some implementations of these blocks 
are described. The structure of all of them is the 
same (Fig. 2), where an easy interconnection and 
real time operation are provided. A little hardware 
block can do its work quickly than a larger one and 
many of these blocks can operate in a parallel mode 
if the intermediate results are accessible. The input 
and output memories, that can be accessed at the 
same time from the source and the target systems, 
are the more important parts of this hardware 
structure. The other element is always a FPGA (or 
several), that holds the vision algorithm and the 
memories addressing task. Depending on the 
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Fig. 1 Blocks diagram of the vision system. 
The frame grabber is not necessary at 
the moment since we are using CMOS 
digital cameras. 



algorithm, the complexity of the FPGA design will 

change from very hard constraints for the optical 
flow calculation to a little effort in image 
transformation algorithms, as in the log-polar 

implementation. At Fig.3 an implementation of the 
first type is shown and at Fig.4 another of the 
second type cited. Only at a first look the 
complexity required can be noted. All the original 
algorithms, [7-9], have served to develop the 
hardware approaches. 
 
 

 
Nevertheless, the system structure is the same and 
if required, several systems could operate at a 
parallel way. 
 
3  Hardware vision system description 
All the described processing takes place in the 
hardware vision system based on FPGA, 
represented in Figs. 5, 6, 7 and which will be 
described next.  

The system components can be modified by using 
the programmable logic circuit capabilities. For 
instance, you can choose whether or not to use the 
above mentioned transformation, which has a 
higher resolution in the attention region (fovea) and 
a lower resolution in the peripheral region, as in 
biological vision systems. You can also choose to 
store only two images, perform an internal buffer to 
do an image filtering, etc. Therefore, previous tasks 
can easily be repeated, as well as new ones, [10-
12]. For these reasons we focussed greatly on the 
flexibility of the system. Also, we have intended to 
reduce as much as possible the system dimensions 
so that it can be assembled on real systems. 
Therefore, we have designed the printed circuit 
assembly with six faces (two planes for ground and 
power connections and four for routing signals) and 
a fabrication class of 6.  
The vision system has the following input options: 
- A low-cost, monochrome, digital camera 
(OV7120) [13] with a 640 x 480-pixel resolution, 
which can be directly connected to the vision board 
using a 32-pin flat cable female connector. 
- An IEEE-1394 camera, which can be connected 
using a (Firewire) input connector. This is for 
applications with more features and higher costs. 
This option allows the interweaving of the vision 

 

Start_1 
 

 
MAIN BLOCK 

 
Co_sec_mem         Final_Frame
 
       Start 

       Start 
 

 
BASE GENERATOR 

 
  End_Pixel

 
    BASE            Base_OK 

DATA        BASE        Base_OK 
 

 
 

GRADIENT CALCULATION 
 
 
 
 

Gradient                      End Grad 

    BASE            Base_OK 
 

          End_Lapla
 

LAPLACIANS CALCULATION

Laplacians

Flow vectors 

  End_Pixel      End_Frame    Flow  vectors 
             
End_Lapla 

 
OPTICAL FLOW CALCULATION 

 
Laplacians 
 
End_Grad    

     Gradient 

 
Input  

Memories 
 

Output  
Memories

       Start_1 
 
 

SEQUENCER 
 

               Co_sec_mem 
 
 

ImageLoad

IMAGES 

Fig. 3 Blocks diagram of a FPGA implementa-
tion of a differential optical flow 
extraction algorithm. 
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system in applications that require the processing of 
images that reach the camera at high speeds. 
- Another identical block output to break down 
complex processing into several phases. As a result, 
each system runs in parallel parts of the operations, 
and a complex algorithm can be completed using 
 

 
Fig.6 Upper view of the vision system.  

 

Fig.7 Lower view of the vision system. In 
order to reduce the dimensions of the 
printed circuit board, the components 
have been placed on both sides of the 
board. 

simple blocks, with each block hosted on a vision 
board. 
The above input options can be connected directly 
to the FPGA. However, they are normally 
connected to several memories (typically three 

input memories) in order to store consecutive 
image information. These memories are frame 
buffers, that is, memories used to store a full image, 
of sequential access, especially the AL422 [14], 
with two stand-alone input/output ports. 
This is so that they can be written and read at 
different speeds. They have a capacity of 3Mbits 
and therefore the images can be easily stored in 
different formats. 
This information is processed by an FPGA 
manufactured by ALTERA [15], (model 20k100) 
which addresses the input memories, performs the 
required calculations and downloads the results on 
a dual-port memory. It has the same features as the 
input memories and is accessible to other systems. 
The system can be adapted to multiple situations 
since it is possible to reconfigure the input pins in 
different ways. 
 
The processing outputs can be obtained from 
several connectors: 
- A flat cable male connector, which is the male 
version of the female input connector, to be able to 
connect several systems in parallel so that the 
system outputs to the connector or the output 
memory. It is configured with a signal organization 
identical to the one in the system input. 
- A USB connector to monitor the processing 
output from a PC. To do this, it is necessary to have 
a specific controller (OV511+) from the same 
manufacturer as that of the cameras. 
- A Firewire connector to read the results from this 
format. The communications with this standard are 
performed by a Texas Instruments integrated circuit 
–TSB3A82– which controls the three levels of the 
IEE1394 protocol. 
Alongside these input/output connections, another 
10-pin connector is required for the programming 
of the FPGA from a PC, through a cable connected 
to its parallel port. This programming can be stored 
in a non-volatile configuration memory, included in 
the system, so that there is no need to re-
programme every time the power is shut down. 
 
The system power supply (5V, 3.3V y 2.5V) can be 
obtained from either the USB connector, Firewire 
connector or via a connection to a 5V external 
power supply source. 
In Figs 8 and 9, you can see the layout of a camera 
connected to the vision system, and of two systems 
operating from a camera. These are examples of the 
system operational modes. 



These can deal with complex issues, by breaking 
down the tasks so that they can be performed in 
parallel in several systems with the same structure: 
the output of the first is the input of the second, and 
so on, until the last one, where the global result of 
the processing could be read by a host processor. 

 

Fig. 8 Detail of the interconnection between 
the camera and the vision system. In 
reduced size applications, it can be 
installed directly onto the board 
connector. 

 
 

 
Fig. 9  Detail of the interconnection between 

two vision systems and a camera. By 
using flat cable  connectors, you can 
install the modules required to 
implement the vision algorithm. 

 
  
 

4  Conclusion and future 
developments 
The original contribution of this work is the 
building of a modular hardware architecture, which 
allows the interconnection of the different modules, 
whose outputs can be monitored and whose 
parameters can be programmed by a globally 
controlled system. The whole system goal is to 
operate at real time, with an operating rate of 25 
frames/second. This requires that every element 
must operate at a very high frequency. 
We considered it was necessary to create the 
correct modular functioning of the vision system 
components and also the possibility of being 
controlled and monitored by a higher-level 
hierarchy system. Even if we were incapable of 
obtaining results in real time, this system could 
track and adjust each components operation. 
Therefore, all the modules have a dual-port output 
memory, which can be read by the adjacent module 
and by other hardware that requires the information 
it generates. Normally this is the PC or workstation 
which, from the visual information, can calculate 
new positions for the camera or generate the 
required changes to adapt to a new situation of the 
system. 
For this last objective, the modules must have their 
control/reconfiguration inputs accessible. 
For example the number of iterations and the size 
of the window (for the algorithms calculating the 
optical flow through gradient and correlation 
techniques respectively). If there has been a 
reconfiguration, it will be necessary to wait for a 
period of time before obtaining the correct results. 
Likewise, when the system starts working, there 
will be a latency period in which the images are 
loaded into the input memories and all the blocks 
operating in parallel have their output data ready.  
It is maintained an opinion, which has followers 
and detractors among researchers in the vision field 
–as proved by the critiques or good words received 
in the different international conferences that have 
been attended [2-5], [10-12]–, the hardware 
implementations of vision algorithms will be very 
important in real applications. This is due to the 
possibility of having large complex ASIC, and 
larger and faster FPGA, together with the gradual 
sophistication and increase of the capacity of the 
all-purpose processors or the DSP processors. The 
research done intends to cover an area of the 
important developments in hardware for artificial 
vision. 



Therefore, this research does not intend to be a new 
application for artificial vision, but a hardware 
architecture that allows the implementation of 
vision algorithms by trying to generate vision 
systems that include and leverage different 
hardware elements, as real-time special solutions. 
These will complement the typically programmed 
systems. 
During this research, we have found that many of 
the techniques based on the calculation of the 
optical flow, like the ones used here, are very 
limited in real-time applications, where it is 
necessary to reduce the dependency on the 
restrictions derived from the projection process at 
the image level. However, by reaching the 
processing speeds indicated and using elements 
accessible to any researcher (such as the FPGA) the 
work will be relevant. This is especially true in 
robotic applications where the vision is used by the 
robots to avoid obstacles, follow paths or to 
perform any other required task. Another 
application where vision systems could be key is in 
the development of help systems for driving 
vehicles to avoid collisions with other vehicles or 
other types of road traffic accidents. 
The future development of this investigation can be 
summarized in three points: 
- Inclusion of the developed vision module in a 
robotic head with motors to control the camera(s) 
with three freedom degrees of movement, as well 
as to generate saccadic movements, nystagmus and 
other biological behaviour to be able to study in 
detail the effects on the images. These movements 
set the camera on the desired region, so that more 
information can be obtained from the scene, and the 
volume of data required for the processing can be 
reduced. 
- Use of the vision module on motorized vehicles 
so that their movement can be controlled according 
to the visual information received. 
- Development of other solutions that include 
digital signal processors (DSP) and programmable 
logic devices in order to create other vision 
applications. This new hardware system would 
perform functions that require intensive-data 
processing with one or several FPGAs, and 
mathematical functions, or data-processing, with 
DSP processors. For example, the LSP [16] system 
could be used since it allows faster performance 
implementations by being able to be connected 
directly to the applications developed in Matlab or 
Simulink, which are currently in common use. 

Many of the future results depend greatly on the 
electronic technology evolution, which in coming 
years will be able to provide integration levels, 
which were inconceivable in recent times, 
including microprocessors with a high-level 
parallelism, and with high-capacity and highspeed 
FPGAs. It is believed for us that with this fast 
calculation potential, vision algorithms and 
dedicated hardware will be developed and 
improved so that tasks that are apparently simple 
(such as obtaining optical flow to be able to 
generate the structure of an image from movement 
data) stop being an extremely complex issue [17], 
which vision scientists have been investigating in 
the last 25 years. 
We hope that the hardware solutions provided in 
this paper are helpful in our scientific effort to find 
an answer to a problem that nature solved a long 
time ago. 
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APPENDIX: ALTERA´S APEX DEVICE 
FAMILY 
The capacity of APEX™, the programmable 
logic device family from ALTERA, ranges 

from 30,000 to 1.5 million system gates and 
uses technologies of 0.22-µm, 0.18-µm and 
0.15-µm. Its architecture, shown in Fig. 10, is 
suited for solutions SOPC (system-on-a-
programmable-chip), allowing designers to use it 
easily in a broad range of applications, which 
combine logic and memory needs, as is the case 
with the present vision system. 
The device used in this application belongs to the 
20k device family, more specifically the 20k100 
TC144-3, with a power supply of 2.5V and an 
equivalent capacity of 263,000 system gates, 
together with 101 input/output pins. The system 
can use IPs designed by Altera or by third-parties, 
as well as different types of memories, such as 

ROM, RAM, dual-port and FIFO. 
Its CPLD-type architecture is based on fine grain 
logic blocks which can be grouped to build more 
complex ones. The interconnection resources are 
predefined on the chip so that the compilations are 
more efficient. Furthermore, since the configuration 
is based on RAM technology –to take up less 
space– it is necessary to include in the system a 
FLASH memory module, EPC2, so that the system 
can keep a stable configuration once the application 
has been debugged. 
In order to be able to programme the FPGA, the 
free broadcast environment, “Max + plus2”, and the 
programming cable “Bite-blasterMv” manufactured 
by ALTERA are used. 

 

Fig. 10 Apex 20k device family: Solutions to 
build full systems in a programmable 
chip. 


