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Abstract:– Based on the Lyapunov synthesis approach and regarding the fuzzy system as approximator to approx-
imate unknown functions in the system to be controlled, several adaptive control schemes have been developed
during the last decade or more. Actually, (i) most of them just consider SISO systems (which can avoid the
challenge of the coupling between control inputs); (ii) the system state have been involved in the fuzzy controller
directly (in this way, there is no need to consider the problem of state observer). This paper develops a design
methodology for a class of MIMO nonlinear systems with state observer. The overall adaptive scheme is shown to
guarantee the tracking error, between the outputs of system and the desired values, to be asymptotical in decay,
while maintaining all singles involved stable and forcing the estimated state to follow the real state rapidly.
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1 Introduction

Over the last decade or more, beside the traditional
adaptive control and sliding model control techniques,
neural control, fuzzy control have been appearing
strongly capable in a large amount of research and
industrial applications. The motivation is often that
they provide an alternative to the traditional modeling
and design of control systems where system knowledge
and dynamic models in the traditional sense are un-
certain and time varying. Actually as shown in [1][2],
no matter either fuzzy control or neural control, the
system, rather than “control”, is used as the param-
eterized approximator that is finally expressed as a
series of radial function (RBF) expansion due to its
excellent approximation properties. A key element of
this success has been the merger of adaptive system
theory with approximation theory [3], where the un-
known plants are approximated by parameterized ap-
proximators. This is why a large amount of research
on adaptive control involving fuzzy approximator has
appeared in this research field since the early 1990’s.
On the other hand, most of adaptive control systems,
where fuzzy approximator, is used proposed so far in-
volve the system state directly, and which is some-
times unavailable especially in a nonlinear system. Al-
though some encouraging challenges have been carried
out using the concept of fuzzy state observer [7]-[8],
there is still not a clear clue that shows the connection
between the real control state, observer, fuzzy approx-
imator, and the system controller. This greatly limits
the flexibility of fuzzy control system to be applied
to a practical system. Another concern over the pro-
posed adaptive control systems is that they mostly pay
attention on the single-input/single-out (SISO) sys-
tems, and the system design for which can not be ex-
tended to a mutiple-inputs/mutiple-outputs (MIMO)
system straightforwardly. Therefore, the system de-

sign should be built based on MIMO system in terms
of system applicability.
In this paper, our goal is to show an approach of adap-
tive control for a class of MIMO nonlinear systems
with disturbance, in which state observer is proposed
instead of using the unavailable system state. Consid-
ering the part closely related with the state observer
as a subsystem, the whole system behavior, thus, be-
comes a standard singularly perturbed form [9]-[11],
in which the gap between the real state and its corre-
sponding value from the state observer decays to order
O(ǫ) 1 in a very fast speed by choosing an arbitrarily
small constant ǫ. Also until then, the gap is treated
as part of system disturbance. To deal with the re-
construction error regarding the fuzzy approximator,
we adopt a switching function with an alterable coef-
ficient, which is tuned by an adaptive law based on
the tracking error, in stead of the upper bound as-
sumptions as well as treating the disturbance. The
adaptive law to adjust all parameters will be devel-
oped based on the Lyapunov synthesis approach. It is
shown that the proposed fuzzy controller guarantees
the tracking error, between the output of the consid-
ered system and the desired value, to be shrunken to
zero, while maintaining all signals involved in the sys-
tem stable, and forcing the estimated state from the
state observer to follow the real state rapidly.

1A vector function f(t, ǫ) ∈ Rn is said to be O(ǫ) over an
interval [t1, t2] if there exist positive constants k and ǫ∗ such
that

||f(t, ǫ)|| ≤ kǫ, ǫ ∈ [0, ǫ∗], t ∈ [t1, t2]

where || · || is the Euclidean norm [12].



2 Problem Statement

Consider the following MIMO continuous-time nonlin-
ear system:

x
(n) = F (X) + B(X)u + D (1)

where X = [XT
1 , XT

2 , . . . , XT
m] ∈ R

Pm
i=1

ni with

Xi = [xi, ẋi, . . . , x
(ni−1)
i ]T ∈ Rni being ith subsys-

tem state vector is the global state vector, F =
[f1, f2, . . . , fm]T ∈ Rm is a vector function, B =
[bi,j ] ∈ Rm×m is the control gain matrix, both F

and B are unknown nonlinear functions of the sys-
tem state vector. u = [u1, u2, · · · , um]T is the con-

trol vector. x
(n) = [x

(n1)
1 , x

(n2)
2 , . . . , x

(nm)
m ]T ∈ Rm.

D = [d1, d2, . . . , dm]T ∈ Rm is an uncertainty vector.
Let xd = [xd1

, xd2, . . . , xdm]T ∈ Rm be a desired
trajectory vector and define the tracking error vector,

x̃ = x − xd (2)

where x = [x1, x2, . . . , xm]T ∈ Rm. The problem we
consider in this paper is to design a controller vector
u for (4) which ensures the tracking error vector (2)
to be uniformly ultimately bounded, also the ultimate
bound should be made arbitrarily small by choosing
appropriately control parameters, while maintaining
all signals in the system uniformly bounded.

Here, we rewrite system (1) in a more general form
as

x
(ni)
i = fi(X) +

m
∑

j=1

bi,j(X)uj + di (3)

where i = 1, 2, . . . , m. (3) is referred to as ith subsys-
tem, which is corresponding to the independent coor-
dinate xi. Also, ith subsystem (3) can be rewritten in
state-space representation,

{

Ẋi = AiXi + Bi

(

∑m
j=1 bi,j(X)uj + di

)

yi = CT
i Xi

(4)

where,

A =















0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0















∈ Rni×ni

BT = [0 0 . . . 0 1] ∈ Rni

CT = [1 0 . . . 0 0] ∈ Rni

and X T
i = [xi,1, xi,2, . . . , xi,ni

] =
[

xi, ẋi, . . . , x
(ni−1)
i

]

where not all xi,l

(l = 1, 2, . . . , ni) are assumed to be available for
measurement in this paper. In the remainder of this
paper, the ranges for subscript i, and l are 1 ∼ m,
and 1 ∼ ni, respectively, unless it specifies.
Thus, for ith subsystem (3) the problem becomes
developing ui that ensures the tracking error,

x̃i = yi − xdi (5)

to be uniformly ultimately bounded and the whole
sytem’s stability.

The nonlinear functions fi and bi,j in (3) are un-
known, so before developing our control system we
have to solve the problem of approximating fi and
bi,j. In the following section, it will be shown that
using fuzzy IF-THEN rules, the unknown functions fi

and bi,j can be approximated by some parameterized
fuzzy approximators.

To proceed with our development, we state our as-
sumption on the system.

Assumption : The control gain bi,j is finite, nonzero,
and of known sign for all X; without loss of general-
ity this sign can be taken as positive. The functions
d
dt

(1/bi,i), and di are bounded.
It should be noted that here in this paper, we just

suppose that the boundedness of d
dt

(1/bi,i), and di is
existent, and its each real boundary does not need to
be known in the development of control system.

3 Control System Approach

3.1 Fuzzy Approximator

The fuzzy model addresses the imprecision of the in-
put and output variables directly by defining them
with fuzzy sets in the form of membership functions.
The basic configuration of the fuzzy model includes a
fuzzy rules base, which consists of a collection of IF-
THEN fuzzy rules. Now, we consider a fuzzy model
with singleton consequent, product inference, Gaus-
sian membership function in the antecedent, and cen-
tral average defuzzifier, hence, such a fuzzy model can
be written as

F(Z) = WT · G(Z) (6)

where ZT = [z1, z2, . . . , zn], WT = [w1, w2, . . . , wN ]
with N being the number of fuzzy rules;
GT (Z) = [g1(Z), g2(Z), . . . , gN (Z)] with

gj(Z) =

Qn
i=1

µ
Ai

j
(zi)P

N
j=1

Q
n
i=1

µ
Ai

j
(zi)

where µAi
j
(zi) is a

Gaussian membership function, defined by

µAi
j
(zi) = exp



−

(

zi − ξi
j

σi
j

)2


 (7)

where ξi
j indicates the position, and σi

j indicates the
variance of the membership function.
We now can show an important property of the fuzzy
system above. As shown by Wang et al [1], the fuzzy
system has the same pattern as a neural network. Ex-
actly as a neural network, which has powerful abilities
of learning and approximation, a fuzzy system with
the Gaussian membership is capable of uniformly ap-
proximating any well-defined nonlinear function over
a compact set U to any degree of accuracy. The fol-
lowing theorem [2] theoretically supports this claim.

Theorem 1 For any given real continuous function
f on the compact set U ∈ Rn and arbitrary ε∗, there



exists an optimal fuzzy system expansion F∗(Z) =
W ∗T · G(Z) such that

sup
Z∈U

|f −F∗(Z)| ≤ ε∗ (8)

This theorem states that the fuzzy system (6) is a
universal approximator on a compact set.

3.2 State Observer

To deal with the unknown functions such as fi(X),
we will employ the fuzzy approximator above to esti-
mate them. In the fuzzy approximator, as the input
variables the system state is often used. However, as
mentioned previously, not all xi,l in Xi are assumed
to be available for measurement in this paper, there-
fore, first of all we have to design a state observer. We
estimate the state xi,l using the observer

{

˙̂xi,l = x̂i,l+1 +
αi,l

ǫl (yi − x̂i,1), l = 1, . . . , ni − 1
˙̂xi,ni

=
αi,ni

ǫni
(yi − x̂i,1)

(9)
where ǫ is a positive parameter to be specified. The
positive constant αi,l is chosen such that the roots of

sni + αi,1s
ni−1 + · · · + αi,ni−1s + αi,ni

= 0 (10)

have negative real parts. Like (4), the state observer
(9) can be rewritten in state-space representation,

˙̂
X i = AiX̂i + Di(ǫ)LiC

T
i (Xi − X̂i) (11)

where,

Di(ǫ) =











1
ǫ

1
ǫ2

. . .
1

ǫni











∈ Rni×ni ,

LT
i = [αi,1, αi,2, . . . , αi,ni

] ∈ Rni ,

X̂ T
i = [x̂i,1, x̂i,2, . . . , x̂i,ni

] =
[

x̂i, ˆ̇xi, . . . , x̂
(ni−1)
i

]

.

Now, we define a matrix Ni(ǫ) ∈ Rni×ni as follows.

Ni(ǫ) =











ǫni−1

ǫni−2

. . .

ǫ0











.

Using the special structure of the matrices Ni(ǫ),
Di(ǫ), Bi, Ci, and Li, it can be shown that

{

N−1
i (ǫ)Bi = Bi

N−1
i (ǫ)

[

Ai − Di(ǫ)LiC
T
i

]

Ni(ǫ) = 1
ǫ

[

Ai − LiC
T
i

]

(12)
Let

ei,l =
1

ǫni−l
(xi,l − x̂i,l) (13)

and ET
i = [ei,1, ei,2, . . . , ei,ni

] =
[

ei, ėi, . . . , e
(ni−1)
i

]

,

which is the scaling estimation error. Thus, we have

Ei = N−1
i (ǫ)

(

Xi − X̂i

)

(14)

From (4), (11), (12), and (14), it follows that

Ėi =
1

ǫ

(

Ai − LiC
T
i

)

Ei + Bi





m
∑

j=1

bi,j(X)uj + di





(15)
where the characteristic equation of matrix (Ai −
LiC

T
i ) is (10). Including the state observer, at this

stage the whole system behavior is dominated by (4),
and (15). This is the standard singularly perturbed
form. If attention is paid to term 1

ǫ
in (15), we can

easily see that the evolutions of Xi, and Ei do have
a absolutely different transient speed, in which (15)
is called the fast model whereas (4) is called the slow
model [10]. In the following subsection, we will take
advantage of the evolutions’ different transient speeds
to develop the fuzzy control system.

3.3 Structure of Controller

In this paper, we adopt the variable structure theory
to construct our adaptive fuzzy control system. The
sliding mode hyperplane is firstly defined as

si =

(

d

dt
+ λ

)ni−1

x̃i with λ > 0 (16)

where λ defines the bandwidth of the error dynamics
of the system. The equation defines a time-varying
hyperplane in Rni on which the tracking error x̃i de-
cays exponentially to zero, so that perfect tracking can
be asymptotically obtained by maintaining this con-
dition. In this case the control objective becomes the
design of a controller that ensures si = 0. The time
derivative of the error metric can be written as

ṡi =

m
∑

j=1

bi,juj + di + fi

−x
(ni)
di + ΛT

i X̃i (17)

where ΛT
i =

[

0, λni−1, (ni − 1)λni−2, . . . , (ni − 1)λ
]

,

X̃i = Xi−Xdi, XT
di =

[

xdi, ẋdi, . . . , x
(ni−1)
di

]

. Referring

to system (3), it naturally suggests that when bi,j, and
fi are known, a controller of the form

ui = b−1
ii

[

−kdsi − fi + ai

−

m
∑

j=1
j 6=i

bi,juj − d∗i · sgn(si)

]

(18)

where kd > 0, |di| ≤ d∗i with d∗i being the boundary of

di, ai = x
(ni)
di −ΛT

i X̃i, leads to ṡi ≤ −kdsi, and hence,
x̃i → 0 as t → ∞. However, the problem is how ui can
be determined when bi,j , and fi, as well as the upper
boundary d∗i for di, are unknown. What is more, the
state X and the sliding mode si involving Xi can not
be used in the controller directly due to the problem
with Xi’s measurement.
Using the estimated state X̂i instead of Xi, we define



a new sliding mode hyperplane

ŝi =

(

d

dt
+ λ

)ni−1

(x̂i − xdi) (19)

Using the relation x̂i = xi − ǫni−1ei from (14), ŝi can
be rewritten as

ŝi = si − ǫni−1ΛT
1iEi (20)

where ΛT
1i =

[

λni−1, (ni − 1)λni−2, . . . , (ni − 1)λ, 1
]

.
Taking the time derivative of both sides of (20), it
follows that

˙̂si = fi +

m
∑

j=1

bi,juj − âi + dei (21)

where âi = x
(ni)
di − ΛT

i

(

X̂i − Xdi

)

, and

dei = di + ΛT
i

(

Ni(ǫ) − ǫni−1I
)

Ei. (22)

in which the gap between x
(ni)
i and x̂

(ni)
i can be cov-

ered by disturbance di. In other words, the gap can be
viewed as a part of the disturbance that is unknown
but dealt with by an adaptive law in this paper.
As shown latter on, the scaling estimation error Ei is
bounded. Considering Assumption in section 2 stip-
ulating the boundedness of disturbance di and Ei’s
boundedness, the inequality

|dei| ≤ d∗ei (23)

is satisfied for some d∗ei. As mentioned in the assump-
tion, the value of d∗ei is not involved in the system
design, therefore, it is no necessary to know the value.
To proceed with the system development, one task left
is how to deal with the unknown functions bi,j , and
fi. Here in this paper we employ the fuzzy approxi-
mator described previously to estimate them using the
estimated state X̂i. For the convenience of system de-
velopment, we use the fuzzy approximator to estimate
newly transformed functions gi = 1/bi,i, hi = fi ∗ gi,
and qi,j = bi,j ∗ gi (j 6= i) instead of bi,j , and fi. Let

us denote g∗i (X̂) = W ∗T
gi Ggi(X̂), h∗

i (X̂) = W ∗T
hi Ghi(X̂),

and q∗i,j(X̂) = W ∗T
qij Gqij(X̂) to be the optimal fuzzy ap-

proximators of the unknown functions gi, hi, and qi,j ,
respectively. According to Theorem 1, there are some
small positive values ε∗gi, ε

∗
hi such that the errors,

εgi = gi − g∗i (24)

εhi = hi − h∗
i (25)

which are referred to as reconstruction errors, satisfy
the following inequalities,

|εgi| ≤ ε∗gi (26)

|εhi| ≤ ε∗hi (27)

Similarly, the reconstruction error for qi,j is defined as

εqij =
(

qi,j − q∗i,j
)

uj (28)

In the above expression, control input uj is involved.
In a control system, the boundedness for the control

input, which can be confirmed in (31) and later devel-
opment, is a basic requirement. Therefore, like (26)
and (27), here it is reasonable to assume that εbij is
bounded by a constant ε∗qij :

|εqij | ≤ ε∗qij (29)

And, one fact is that, according to Assumption in sec-
tion 2, the time derivative of gi,

d
dt

gi, is supposed to
be bounded in this paper. Therefore, there is a d∗gi

such that

|
d

dt
gi| ≤ d∗gi (30)

We also should note that the values of ε∗gi, ε
∗
hi, ε∗qij ,

and d∗gi do not need to be specified in this paper.
However, the optimal vectors W ∗

gi, W ∗
hi, and W ∗

qij in
the optimal fuzzy approximators are also unknown, so
their estimates, denoted ĝi(X̂) = ŴT

giGgi(X̂), ĥi(X̂) =

ŴT
hiGhi(X̂), and q̂i,j(X̂) = ŴT

qijGqij(X̂) are adopted.
Inspired by the control structure in (18), our fuzzy

controller is now described as

ui = ufdi + ufzi + usdi (31)

where ufdi, ufzi, and usdi are an error’s feedback com-
ponent, fuzzy component and sliding component, re-
spectively. The error’s feedback component ufdi, con-
cretely expressed by,

ufdi = −kdŝi −
1

2
d̂giŝi, kd > 0 (32)

is a kind of feedback of tracking error (x̂i − xdi), in

which the coefficient d̂gi is the estimate of d∗gi in (30),
and is tuned by,

˙̂
dgi =

1

2
γdg

ŝ2
i , γdg

> 0 (33)

The fuzzy component ufzi, expressed by,

ufzi = −ĥi + ĝiâi −

m
∑

j=1
j 6=i

q̂i,juj

−









ε̂hi + ε̂gi|âi| +

m
∑

j=1
j 6=i

ε̂qij|uj |









sgn(ŝi)

(34)

will cover the unknown functions gi, hi, qi,j , and at-
tempt to compensate the estimating errors. At the
same time, the adaptive laws are synthesized by

˙̂
Whi = ΓhiGhi(X̂)ŝi (35)

˙̂
W gi = −ΓgGgi(X̂)âiŝi (36)

˙̂
W qij = ΓqGqij(X̂)uj ŝi (37)

˙̂εhi = γh|ŝi| (38)
˙̂εgi = γg|âiŝi| (39)

˙̂εqii = γq|uj ŝi| (40)

where Ŵ·, and ε̂· are the estimates of W ∗
· , and ε∗· , re-

spectively; Γ·, and γ· are some appropriate symmetric



positive definite matrices, or positive constants which
determine the rates of adaptation.

The sliding component usd, expressed by,

usdi = −d̂egisgn(ŝi) (41)

copes with the disturbance di in (1). And the coeffi-

cient d̂eg, which is the estimate of (d∗ei · g
∗
i ), is tuned

by an adaptive law as follows:

˙̂
degi = γdeg

|ŝi| (42)

where γdeg
is the rate of adaptation as well.

3.4 Analysis of Stability

Now, consider the following Lyapunov function candi-
date,

V1 =
1

2

(

giŝ
2
i +

1

γdg

d̃2
gi +

1

γh

ε̃2
hi +

1

γg

ε̃2
gi +

1

γdeg

d̃2
egi

+
m
∑

j=1
j 6=i

W̃T
qijΓ

−1
q W̃qij +

m
∑

j=1
j 6=i

1

γq

ε̃2
qij

+W̃T
hiΓ

−1
h W̃hi + W̃T

giΓ
−1
g W̃gi

)

(43)

where,

d̃gi = d∗gi − d̂gi (44)

ε̃gi = ε∗gi − ε̂gi (45)

ε̃hi = ε∗hi − ε̂hi (46)

d̃egi = d∗eig
∗
i − d̂egi (47)

W̃qij = W ∗
qij − Ŵqij (48)

ε̃qij = ε∗qij − ε̂qij (49)

W̃hi = W ∗
hi − Ŵhi (50)

W̃gi = W ∗
gi − Ŵgi (51)

Using expressions (44-51), and adaptive law (33), (35-
40), and (42) into the time derivative of the Lyapunove
function candidate follows,

V̇1 < −kdŝ
2
i (52)

Therefore, all signals in (43), which also are signals
involved in the system, are bounded, and ŝi → 0, as
t → ∞, which also means (x̂i − xdi) → 0, as t → ∞.
However, our goal is to drive, not the estimated state
x̂i, but the real state xi to follow the desired value. To
this end, one way, the direct way, is to show xi surely
is following xdi, and another way, the indirect way, is
to show that x̂i is equal to xi, the error between them
decays to almost zero at a very fast speed. Here, we
take the indirect approach. Let us pay attention to
the fast model (15). Consider the following Lyapunov
function candidate,

V2 = ET
i PiEi (53)

where PT
i = Pi > 0 is the solution of the Lyapnove

equation,

Pi

(

Ai − LiC
T
i

)

+
(

Ai − LiC
T
i

)T

i
Pi = −Ii (54)

Based on the analysis above, the boundedness of con-
troller (31) is guaranteed. Therefore, inequality

|fi + biui + di| ≤ ki (55)

is satisfied for some ki ≥ 0 subject to Assumption
stipulated in section 2. Substituting (54) into the time
derivative of V2, it follows that

V̇2 ≤ −
1

ǫ
||Ei||

2 + 2ki||PiBi||||Ei||

≤ −
γi

ǫ
V2, if V2 ≥ ǫ2βi (56)

where γi = 1
2λmax(Pi)

, and βi =

16||PiBi||
2k2

i λmax(Pi). This implies,

V2 ≤ V2(0)e−
γi
ǫ

t (57)

We can get that there exists

Ti =
ǫ

γi

ln

(

V2(0)

ǫ2βi

)

(58)

such that for t ≥ Ti, V2 satisfies

V2 ≤ ǫ2βi (59)

From (53), we have ||Ei||
2 ≤ 1

λmin(Pi)
V2. Therefore, it

follows that

||Ei|| ≤ µiǫ, if t ≥ Ti (60)

where µi =
√

βi

λmin(Pi)
. Therefore, the scaling estima-

tion error decays to the order O(ǫ). Since ǫ can be
chosen arbitrarily small, we can make Ti in (58) ar-
bitrarily small as well. Consequently, considering the
relation in (14), we conclude the estimated state X̂i

closely follows its real state Xi at a very fast speed,
i.e., X̂i → Xi. Furthermore, we have xi → xdi.

4 Simulation Example

In order to verify the proposed design procedure, we
apply the approach developed in previous section to
the Duffing forced-oscillation system:

ẍ(t) = −aẋ(t) − bx3(t) + c cos(t) + u. (61)

Its behavior is chaotic in unforced case, i.e., u = 0.
The unforced trajectory of the system is shown in
Fig.1 in phase plane (x, ẋ) for x(0) = ẋ(0) = 2, a =
0.11, b = 1, c = 12, and time period [0, 60]. Now,
we use the control approach proposed in this paper
to force the state x(t) to follow a desired trajectory
xd(t) = sin(t). In the phase plane, the desired trajec-
tory is a unit circle: x2

d(t) + ẋ2
d(t) = 1. In this simu-

lation, we choose the initial membership functions as
shown in Fig.2 for both x(t) and ẋ(t).

Clearly, the two input variables lead to 7 × 7 = 49
fuzzy rules at most as follows:

Rj : IF x is A1
j , ẋ is A2

j THEN f is wj
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Figure 1: Unforced trajectories (x, ẋ)
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Figure 2: Membership functions in precedent

To verify the control scheme, suppose that we have
no knowledge regarding the function f = −aẋ(t) −
bx3(t) + c cos(t), so the initial consequents wj are se-
lected randomly. Control law u in (31) was used. The
error’s feedback component ufd(t) is synthesized by
(32), and (33) where kd = 1, γdg

= 0.2. The fuzzy
component ufz(t) is synthesized by (34), (35), and
(38) where Γh = 0.1I with I being an appropriate
identity matrix, γh = 0.2. Further, the sliding compo-
nent is determined by (41), and (42) where γdeg

= 0.2.
In addition, we take the values that λ = α1 = 1,
α2 = 0.1, ε = 0.01, Γg = 0.1I and γg = 0.2 in this
simulation.

Simulation result is shown in Figs.3-6. The closed-
loop trajectories are depicted with the initial condi-
tions x(0) = ẋ(0) = 2 in Fig.3. The control input
u(t) is shown in Fig.4. Further, the estimated er-
rors of (x̂(t) − x(t)), and ( ˙̂x(t) − ẋ(t)) are displayed
in Fig.5, and Fig.6, respectively. We see that our con-
trol approach can handle well a system with some un-
known time-variable facts such as cos(t) to track a
time-varying desired trajectory.

We also should note that, when the tracking error
x̃(t) enters around the sliding surface, sign function
sgn(ŝ) begins working frequently so that such a con-
trol law (31) leads to control chattering. Chattering
is undesirable in practice because it involves high con-

1 2 3 2 41 2 51 2 41 2 31 61 71 51 4345762 3
8 9 : ;

<=<>?@>A
Figure 3: Controlled trajectories (x, ẋ)

B C D B D C E B E C F BG E C BG E B BG D C BG D B BG C BBC BD B BD C B
H I J K L MN

OPQR
Figure 4: Amount of control law u(t)

trol activity, and further may excite unmodeled high
frequency plant dynamics. This problem can be elim-
inated by adopting a saturation function,

sat

(

s

φ

)

=







1 s
φ
≥ 1,

−1 s
φ
≤ 1,

s
φ

otherwise.

where φ is a little constant instead of sgn(s), and a
smoothed sliding mode sφ = s−φ · sat(s/φ) instead of
s(t) [6]. What’s more, the system stability analysis is
almost same with what appeared in this paper. Actu-
ally, the results given above were performed with sφ,
and sat(s/φ) where φ = 0.01.

5 CONCLUSION

In this paper, we proposed an adaptive controller for
a class of nonlinear systems with state observer. The
results achieved in this paper can be summarized in a
theorem as follows.

Theorem 2 If the plant (1), subject to Assumption
in section 2, is controlled by (31-32), (34), and (41)
with the adaptive law (33), (35-40), (42), and the state
observer (9), then all signals involved in the control
system will remain bounded, and the tracking error
will asymptotically shrink to zero, at same time, the
estimated state follows its real state.
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Figure 5: Estimated error (x̂(t) − x(t)).
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Figure 6: Estimated error ( ˙̂x(t) − ẋ(t)).
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