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Abstract: - The self-imaging position (or Talbot effect) for generalized complex functions, obtained as a product 
of scaled periodic components, is studied in this paper. The self-images of each periodic component and for the 
complete transmittance are shown. Different configurations including mixed gratings are considered and it is 
shown that the positions of Talbot planes are also related with the scaling factor. 
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1   Introduction 
In some previous works we have developed the 
mathematical methods that allow us to represent 
fractal gratings through a product superposition of 
periodic components [1-3]. For a simplification, in 
the present study these types of fractal structures have 
the following characteristics: 1) The periodic 
components have an aperture ratio α≤5, 2) The 
scaling factor (s) is an integer value and, to achieve 
fractal structures, it must comply with s>2, 3) Due to 
the conditions on self-imaging formation we use 
"periodic Cantor transmittances", this mean that the 
Cantor structure are periodically repeated and 
included into the initial periodic component. 
The results that we present here are referred to the 
analysis, of the intensity field and the self-imaging 
formation [3-7] (or Talbot effect) when periodic 
components are superimposed as a product to obtain 
a total transmittance with complex geometry. This 
way, we show the influence of each component and 
the position of self-images of the total transmittance. 
 
 
2 Field in the Fresnel region 
According to the scalar theory, for an 
electromagnetic field with wavelength λ, the 
corresponding diffracted field in the Fresnel region 
from a transmittance T(x), is given by: 
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where x is the transversal coordinate to the 
propagation direction z. The operators F{} and T ̃(u) 
indicate the Fourier transform and u is the variable in 
the Fourier space (or spatial frequency). The 
mathematical expressions for representing, through 

the Fourier analysis, an infinite periodic transmittance 
with rectangular basic elements, distributed with 
period D, and the corresponding Fourier transform, 
are given by: 
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2.1 Self-imaging formation 
From Eqs. (1) and (2), the electromagnetic field for 
this case is expressed as: 
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where it can be seen that, for the positions: 
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there are replicas of the transmittance function 
defined in Eq. (2), because in this case the term into 
the second exponential is equal to one. Furthermore, 
zT is the position for the first Talbot plane. It is clear 
that, if q∈ℜ (real, not integer) we are not on a Talbot 
plane (the second exponential in Eq. (3) is not equal 
to one). 
 
 



3 Generalized transmittances with 
periodic functions 

In previous work, we have shown the possibility of 
building fractal structures from binary functions or 
domains with periodic components [1-3]. These 
examples contain also a scaling factor s used for 
obtaining the successive scaled periodic components 
Rk from an initial one. Fractal transmittances with 
periodic components can be expressed as the product: 
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being N the order of the structure and s the scaling 
factor. Complex functions using Eq. (5) is, in this 
way, very simple and important, from the optical 
point of view, when using periodic functions. Some 
examples included in this formulation are: 
 

 Walsh functions [8]: 
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 Mixed gratings: 
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 Cantor functions (see also [9]): 
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 Cosenoidal functions: 
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4 Calculation of field for complex 
transmittances 
Different theoretical methods and approaches have 
been developed to study the properties of self-
imaging phenomenon. The Fourier analysis allows 
the development of theoretical calculation with 
applications for optical information processing. Now, 
including the expressions for the complex gratings 
into Eq. (1), we obtain the result: 
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and, similarly to the result of Eqs. (3) and (4), the 
self-images position can be obtained if the following 
condition is accomplished:  
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This fact can be seen in Fig. 1, that show the 
Montgomery rings in the spatial frequencies [8], for 
the case of Cantor transmittances with fractal 
dimension D≈0.6309 and D=0.5. Dot and dash lines 
are the self-imaging position for scaled periodic 
components and solid lines for the Cantor 
transmittance, with different orders. 
 

 
 
Fig. 1 – Montgomery rings for Cantor gratings. 
 
 
Then, at any arbitrary position, where the periodic 
component with order j have a self-image, the 
condition of Eq. (7) becomes to: 
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Some experimental results obtained with a complex 
transmittance are shown in Fig. 2. The positions of 
self-images of two components (j1 and j2) have also 
related through: 
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Then, the self-imaging for the complete fractal set is 
obtained at the position of self-imaging of the 
periodic component with the bigger period. This is: 
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Where D is the period of such component and dN is 
the period for the component of order N. 
 
 
5 Conclusions 
The self-imaging phenomenon, for generalized 
complex functions, obtained as a product 
superposition of periodic components, is studied. In 
this work, the periodic functions can have real or 
integer scaling factors. The self-image positions are 
independent for each periodic component and are 
expressed as a function of the scaling factor. For a 
certain distance along the propagation, we can see in 
the mathematical expressions that a self-image of the 
total fractal structure is achieved. 
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Fig. 2 – (a) Complex grating image at the Talbot 
plane for one periodic component (b). 


