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Abstract: -  This paper presents a new fuzzy Lyapunov controller for nonholonomic mobile vehicles. A 
symbiosis between classical backstepping techniques and fuzzy logic was realized. The control system ensures 
a good robustness with respect to outside perturbations. These perturbations can interact with the vehicle. They  
are sources of uncertainty for the system model and can perturb the validity of the nonholonomic constraints. 
Therefore the trajectory tracking problem with noise is considered. The asymptotic stability of the fuzzy 
kinematical control system is guaranteed by Lyapunov�s  method. The algorithm efficiency, error minimization 
and noises reject are confirmed through simulation examples in Matlab environment.  
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1   Introduction 
In recent years much attention has been focused 
upon the motion control of nonholonomic 
mechanical systems [2], [3]. The mobile wheeled 
vehicle is usually studied as a typical nonholonomic 
system. Many approach have been proposed to treat 
the motion control on nonholonomic vehicles. In 
particular in [6], [8] a model of the mobile vehicle  
by using of the Lagrange-Euler method is developed. 
In [5], [13] some technical for the synthesis of 
kinematic controllers are presented. In [13] a control 
method for the trajectory tracking problem of a 
nonholonomic mobile robot, using a kinematic 
model with linearization, is developed. In [5] a 
solution based on a discrete time sliding mode 
controller is presented. In [9] and [6]  a dynamical 
extension is proposed by referring to the 
backstepping kinematics into dynamics and the 
torque of the single driving wheels is obtained. 
However all these jobs have proved to be not very 
effective towards the adaptability to the component 
of uncertainty which characterizes the model. The 
neural net and/or fuzzy logic offer a solution to this 
problem. In [7] and [8] a neural net inside the 
classical controller which allows to estimate the 
entity of the random component is used. In [14] a 
kinematic fuzzy logic controller and heuristic rules 
are presented.  

In this paper a mixed controller which uses a 
backstepping computed torque dynamic controller 
[6] and a new fuzzy mechanism which compensates 
the unmodelled dynamics is proposed. Pratically the 
proposed control system takes into account  the 
effects instead of the causes which can give rise to 

errors on the vehicle position. These errors perturb 
the nonholonomics constraints. The fuzzy 
mechanism compensates these perturbations. Also 
the stability of the new Fuzzy kinematical control 
system is shown by the Lyapunov�s method.      

This paper is organized as follows. In section 2 
the kinematic and dynamic model of the 
nonholonomic vehicle is presented. In section 3 the 
trajectory tracking problem with noise is defined. 
Section 4 shows the steps of the fuzzy computed 
torque controller design and proof of Lyapunov�s 
stability has been developed. In particular the Fuzzy 
inference mechanism is planned to guarantee the 
Lyapunov�s stability. Section 5 presents simulation 
tests in Matlab environment. The performances of 
the backstepping classical controller [6] and the new 
fuzzy controller of this paper are compared. 

 
 
2  Mobile vehicle and dynamic model 
Let the mobile vehicle  with two independent driving 
wheels be rigid moving on the plane (see Fig. 1). The 
kinematic parameters are: P (push center), C (mass 
center), d, r and R. Furthermore the vehicle is also 
characterized by the dynamic parameters: m (mass) 
and I (inertia).  

A mobile vehicle system having an n-
dimensional configuration space with generalized 
coordinates    and subject to 
m constraints can be described by use of d�Alembert-
Lagrange form [6]: 
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where: 
)(qM nxnℜ∈  inertia matrix ; 

),( qqVm & nxnℜ∈  centripetal and Coriolis 
matrix; 

1)( nxℜ∈qF &

)(q 1nxℜ∈
 denotes the surface friction;

 G  gravitational vector; 
1rxℜ∈dτ  bounded unknown disturbances 

including unstructured unmodelled 
dynamics; 

)(qB nxrℜ∈  torque transformation matrix; 
1rxℜ∈τ  input vector containing driving 

wheels torque; 
)(qA mxnℜ∈  matrix associated with the 

constraints; 
λ 1mxℜ∈  constraint forces vector. 

 
Fig.1 � Mobile vehicle  

 
The tern {O, X, Y} (see Fig.1) is the earth fixed 

reference, while { }cc YXC ,,

q

)(qA

 is the body fixed 
reference. The position of the mobile vehicle in an 
inertial cartesian frame {O, X, Y} is completely 
specified by q=[xc, yc, θ]T if the body reference is 
fixed in C and  (xc, yc) are the coordinates of the 
reference point C, while is  if the 
body reference is fixed in P. In any case θ is the 
orientation with respect to the inertial basis.Let 

be a full rank matrix (n-m) formed by a set of 
smooth and linearly independent vector fields 
spanning the null space of , i.e.,: 

[ T
pp yx θ   = ]

)(qS

)()( qAqS TT                       (3) 
according to (2) and (3), it is possible to find an 
auxiliary vector time function such that, for all t: 

)()( tvqSq =&         (4) 
The nonholonomic constraint states that the 

vehicle can only move in the direction normal to the 
axis of the driving wheels. If the body reference is 
fixed in C, the mobile vehicle satisfies the conditions 
of pure rolling without slipping as follows [1], [16]: 

0sincos =−− θθθ &&& dxy cc      (5) 
M

The kinematic equations of motion of C in terms 
of its linear velocity and angular velocity are: 
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Also, if the body reference is fixed in the point P 
 (see fig. 1) and C is the mass center, the 

kinematical model is: 
),( pp yx
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Equation (6) or (7) can be written in form (4). 
The following dynamical model is obtained: 

vqSq )(=&       (8) 

τBτvFvvVvM d =+++ ~)()(&    (9) 
where is: 

mnt −ℜ∈)(v  body fixed reference speeds vector; 
rxrℜ∈M  inertia matrix in body reference; 

rxrℜ∈)(vV  Coriolis matrix in body reference; 
1)( rxℜ∈vF  surface friction; 

1~ rxℜ∈dτ  bounded unknown disturbances 
including unstructured unmodelled 
dynamics; 

B rxrℜ∈  torque transformation matrix; 
rℜ∈τ  input vector containing driving 

wheels torque. 
Moreover if  the body reference is fixed in  C (see 
fig. 1) we have: 
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Also, if the body reference is fixed in P, it yields: 
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In any case the dynamical and kinematical 
parameters (M  , )(vV  and B  ) of the vehicle are 
exactly known, while the matrix )(vF  of the 
surface friction, is not well-known. Considering in a 
single term, dτ , all the uncertainty sources of the 
model, the following model form is proposed: 

vSq =&         

τBτvvVv d =++ )(&     (10) 



Therefore the two most important features of 
model (10) are the nonlinearity and the high degree 
of uncertainty. 
 
 
3 The trajectory tracking problem with    

noise 
    The trajectory tracking problem is definite as 

follows [4]: 
Given a reference speed vector: 

[ )()()( ttt rr ωυ=rv ]

]

    (11) 
where 

)(trυ  is the linear velocity and  ω is the angular 
velocity, find a smooth velocity control input: 

)(tr
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where: 
[ rrr yx θ=rq                                               (12)       

and 
[ ] qqe r −==       )( θeeet yx

T                            (13) 
are the reference position and the position error 
respectively. 
From (11) and (7), the vector (12) is the following: 
 ; ;θ =    rrrx θυ cos=& rrr seny θυ=& rr ω&

In this paper a trajectory tracking problem with 
noise is developed. In fact such perturbations, 
perturb the nonholonomics constraints. Therefore 
the control system takes into account  the effects 
instead of the causes which can cause errors on the 
vehicle position.  
 
 
4  Design of fuzzy Lyapunov controller 
Fig. 2 shows the proposed control system. 

 
Fig.2 �Fuzzy computed torque controller 

It has been obtained from a classical computed 
torque controller inserting a fuzzy controller that 
arranges for the determination of the parameters of 
the kinematical and dynamical controllers. The 
proposed kinematical control law is: 
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                                                                          (14) 
The control law (14) depends on the error vector 

(13), on the reference speed and on the kinematic 
parameter vector K: 

[ T
yx tktktk )()()( θ=K ]

 

                                  (15) 
The parameters (15) are provided by the fuzzy 

controller and depend on the error vector. We 
observe that by substituting equation (14) into 
equation (7), the closed loop model results: 
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The dynamic controller provides a control law for 
an auxiliary u vector. Using u vector and applying 
the nonlinear feedback, the following computed 
torque vector is obtained:

[ ]dm τvVuMBuvqqfτ ++== −1),,,( &τ   (17) 
and the dynamic control problem can be convert into 
the kinematic control problem as follows: 

vSq =&  
uv =&        (18) 

The relation (18) is called �perfect velocity tracking� 
condition. Then the proposed nonlinear feedback 
acceleration control input is [16]: 
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where: 
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The parameters of matrix (20) are provided by the 
fuzzy inference mechanism.  
 

 4.1 Fuzzy mechanism inference and 
Lyapunov�s stability  
The controller is of Mamdani type [11] with three 
inputs and four outputs. The input is the error vector 
(13) and the output is the vector of kx, ky, kθ and kd 
values (cf. eqs. 15,19,20). The input and output 
membership functions, the set of rules and the 
defuzzification methods have been obtained by tests 
based on experimental simulations on the classical 
controller. Simulations have been developed 
submitting the system to several situations and 
changing the type of reference tracking, the form 
and the amplitude of the noise, the membership 
functions, the set of the rules and the defuzzification 
method. Fig.3 shows the membership function of ex; 
three normalized membership functions, defined 
from the linguistic variables SMALL (S), MEDIUM 



(M) and HIGH (H), have been defined; analogously 
the membership functions of ey, and eθ have been 
obtained. Fig.4 shows the defuzzification functions 
of Kx; analogously the defuzzification function of ky, 
kθ and kd have been obtained. In table 1 the set of the 
controller rules is shown. 
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Fig.3 � Membership functions of ex 
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Fig. 4 � Defuzzification functions of kx 

n° rule e x e y e θ K x K y K θ K d
1 S S S+ S S S S
2 S M S+ S M S M
3 S H S+ M H S H
4 M S S+ M S S M
5 M M S+ M M S M
6 M H S+ M H S H
7 H S S+ H M S H
8 H M S+ H M S H
9 H H S+ H H S H
10 S S M+ M M M M
11 S M M+ M M M M
12 S H M+ M H M H
13 M S M+ M M M M
14 M M M+ M M M M
15 M H M+ M H M H
16 H S M+ H M M H
17 H M M+ H M M H
18 H H M+ H H M H
19 S S OPP M M H M
20 S M OPP M M H H
21 S H OPP M H H H
22 M S OPP M M H H
23 M M OPP M M H H
24 M H OPP M H H H
25 H S OPP H M H H
26 H M OPP H M H H
27 H H OPP H H H H
28 S S M- M M M M
29 S M M- M M M M
30 S H M- M H M H
31 M S M- M M M M
32 M M M- M M M M
33 M H M- M H M H
34 H S M- H M M H
35 H M M- H M M H
36 H H M- H H M H
37 S S S- S S S S
38 S M S- S M S M
39 S H S- M H S H
40 M S S- M S S M
41 M M S- M M S M
42 M H S- M H S H
43 H S S- H M S H
44 H M S- H M S H
45 H H S- H H S H  

                Table. 1 � Controller rules 
Theorem III.1: Let the kinematic model (7), 

fuzzy kinematic control laws (14), the linear 
reference velocity ur  positive and also:  
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then the equilibrium state of the non autonomous 
closed loop system (16) is asymptotically stable. 

Proof:  since for hypothesis K(e) (cf.eqs. 15 and 
21) is equal to zero if only if e is equal to zero, the 
equilibrium state of the model (16) is the origin of 
the state space. The system (16) is non autonomous. 
The following Lyapunov function is chosen: 
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Therefore Lyapunov function (22) is positive 
definite.   

The time derivative of (22) is:  
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  By substituting  (16) into (25), it yields: 
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Under the hypothesis of the theorem, function (27) is 
negative semidefinite, because it does not depend on 

 error. Since it results: ye
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where:  
)](max[max tgg = ,                                                (29) 

then the function (22) is a decrescent function. 
Therefore vector (13) is bounded and the 
equilibrium state of the closed loop system (16) is 
stable. It is also possible to calculate the second time 
derivative of Lyapunov function (28). Since the 
second time derivative of (28) depends on bounded 
variables, it is a bounded function. Therefore 
function (27) is uniformly continuous. From 
Lyapunov-like version of Barbalat�s Lemma [9], it 



yields: 
0)(lim 0 =
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tV

t
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From equations (27) and (30), e  and  

converge to zero. From equations (16),  function 
converges to zero. Therefore the steady state error e

x

ye&
θe

y  
is constant. It results: 

yyr ekue )()( ∞−=∞θ&                                          (31) 

where ye  is the steady state value of ey . Since e  

converges to zero, e  converges to zero. We 

observe that k

θ

y

y converges to zero if ye  converges to 
zero. Therefore the equilibrium point of the closed 
loop system (16) is asymptotically stable (Q.E.D.).  

The control surfaces of fuzzy inference 
mechanism are chosen (see Fig. 5) so that the 
hypothesis on ky (cf. eqs. 21) can be verified. 

 

Fig. 5. ky  versus ex and ey , ky versus eθ and ey 

From Fig. 5  we can observe that the control 
surfaces are continuous function and it is results: 
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5   Simulation results 
Simulations have been developed in Matlab simulink 
environment and the performances of a classical 
backstepping controller and  the fuzzy Lyapunov 
controller of this paper are compared. The 
parameters of the vehicle for the simulations are as 
follows: 

r = 0,1m ; R = 0,4 m ; d = 0,5 m 
m = 30 kg ; I = 15 kg  2m⋅

The classical backstepping controller [6] is 
characterized by the following parameters: 

[ ]52020=cK   







=

300
030

dK

The case of a mixed reference trajectory is 
simulated (see Fig. 6). The vehicle is subject to a 
triangular noise (see Fig. 7) on the X direction.  

The following initial conditions have been 
considered: 

υ(0) = 0 m/s ; ω(0) = 0 rad/s 
x(0) = 0 m ; y(0) = 0 m ; θ(0) = 0 rad. 
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Fig 6 - Reference trajectory 
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Fig 7 � Noise 

Figs 8-10 show the tracking errors and the 
actual trajectories for the classical backstepping 
controller [6] and the new fuzzy Lyapunov 
controller proposed in this paper.  
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Fig. 8 - ex [m] 
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Fig. 9 � ey [m] 
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Fig. 10 � Actual trajectories 

 
From Figures 8 and 9 we observe peak value,  

delay time and response time reductions with 
respect to the classical backstepping without fuzzy 
mechanism. 

 
 
6   Conclusion 
In this paper a tracking control problem with noise 
of a mobile vehicle driven by two independent 
wheels has been solved by using a new fuzzy 
Lyuapunov dynamical computed torque controller. 
The fuzzy Lyapunov controller has been developed 
supposing known the vehicle features, as the 
kinematic and dynamic parameters, and taking into 
account boundeness noise which can perturb the 
nonholonomic constraints. The fuzzy controller  
supplies the kinematical and dynamical parameters 
of the classical controller and it is based on classical 
backstepping control. Simulations results in Matlab 
environment have shown that the Fuzzy Lyapunov 
controller has better performances with respect to a 
classical backstepping controller.  
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