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Abstract: - Capability indices compare the actual performance of a manufacturing process to the desired 
performance. In practice these indices are estimated using sample data, often with quite small sample 
sizes. Thus, it is of interest to obtain confidence limits for actual capability index given a sample 
estimate. Most of the traditional methods for assessing the capability of manufacturing process are dealt 
with crisp quality. In this paper we obtain )%1(100 α−  fuzzy confidence interval for pC~  fuzzy process 
capability index, where instead of precise quality we have two membership functions for specification 
limits. A numerical example is given to clarify the method. 
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1   Introduction and Preliminaries 
A process capability index (PCI) is a real number as 
a summary that compares the behaviour of a product 
or process characteristic to engineering 
specifications. This measure is also called 
performance index. A process is said to be capable 
if with high probability the real valued quality 
characteristic of the produced items lies between the 
lower and upper specification limits [9].  

There are several PCIs such as pC , pkC , pmC  
and so on, which are used to estimate the capability 
of a manufacturing process where in most cases the 
normal distribution and a large sample size is 
assumed for population of data [9, 10]. 

After the inception of the notion of fuzzy sets 
by Zadeh [23] there are efforts by many authors to 
apply this notion in statistics. For these trends one 
can see Taheri [20]. 

In some cases specification limits (SLs) are not 
precise numbers and they are expressed in fuzzy 
terms, so that the classical capability indices could 
not be applied. For such cases Yongting [22] 
introduced a process capability index pC  as a real 
number and it was used by Sadeghpour-Gildeh [19]. 
Lee investigated a process capability index, pkC , as 
a fuzzy set [13]. Parchami et al. introduced fuzzy 
PCIs as fuzzy numbers and discussed relations that 
governing between them when SLs are fuzzy rather 
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than crisp [17]. The organization of this paper is as 
follows. In Section 2, we review some traditional 
PCIs and their confidence intervals. In Section 3, we 
represent fuzzy PCIs and then we review ranking 
functions in Section 4. In Section 5 we will obtain 
fuzzy confidence interval for a new fuzzy PCI and 
we will present a numerical example. The final 
section is the conclusion part.  

Let R  be the set of real numbers. Set: 
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Any )(RFA∈  is called a fuzzy set on R  and any 

)(,, RTcba FT ∈  is called a fuzzy triangular number, 

which we sometimes write as ),,( cbaT . We 
assume )(a,a,aT  be }{aI , the indicator function of 
a .  

The following definition could be given by 
using the extension principle, see [16]. 
Definition 1.1  Let )(),,( RTFcbaT ∈ , R∈k , 

0≥k . Define the operation ⊗ on )(RTF  as 

follows 
),,( cbaT ⊗ ( )kckbkaTk ,,= ,         (2) 

called the multiplication of ),,( cbaT  by k .  
 
 
2   Traditional PCIs and Confidence 
Intervals 
The process capability compares the output of a 
process to the SLs by using capability indices. 
Frequently, this comparison is made by forming the 
ratio of the width between the process SLs to the 
width of the natural tolerance limits, as measured by 
6 process standard deviation units. This method 
leads to make a statement about how well the 
process meets specifications [15]. Several PCIs are 
introduced in the literature such as pC , pkC , pmC  
and so on, see [9, 10]. For convenience, we will 
denote the upper and lower specification limits by 
U  and L , respectively, rather than the more 
customary USL and LSL notations. When univariate 
measurements are concerned, we will denote the 
corresponding random variate by X . The expected 
value and standard deviation of X  will be denoted 

by µ  and σ , respectively. We will limit ourselves 
to the situation where µ  is in the specification 
interval, i.e. UL ≤≤ µ , and we assume that the 
measured characteristic should have a normal 
distribution (at least, approximately). 

The commonly recognized PCIs are  
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where T  is target value and [.]E  denotes expected 
value. For each of these indices a large value implies 
a better distribution of the quality characteristic. 

Introduction of pC  is ascribed to Juran [6]; that 

of pkC  to Kane [8]; that of pmC  for the most part to 
Hsiang and Taguchi [5].  

Substituting the sample mean and standard 
deviation in (3), (4) and (5) will provides a point 
estimate for any of these indices. We would never 
expect this point estimate to be exactly equal to the 
real value of the population  parameter. So we often 
also compute a )%1(100 α−  confidence interval for 
parameter.  In practice a confidence bound can be 
used to guard against false optimism. In the 
following several confidence intervals for PCIs from 
Kotz and Johnson [10] are quoted. 

 Kane [8] suggest the )%1(100 α−  formula for 
confidence interval limits of pC  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−−
−−−

)1(
ˆ,

)1(
ˆ

2
21,1

2
2,1

n
C

n
C n

p
n

p
αα χχ

,         (6) 

where 
σ̂6
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Kushler and Hurley [12] suggest the simple 
formula for lower bond of pkC  
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where σ̂6)2(ˆ MxLUC pk −−−= , and Kotz and 
Lovelace [11] reports that Dovich (1992) gives the 
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corresponding approximate )%1(100 α−  formula 
for confidence interval limits of pkC  as follows 
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3   Fuzzy Process Capability Indices 
As explained in Section 1, the pC  index based on 
fuzzy SLs is introduced as a real number by Yongting 
[22] and was used by other authors. But when we 
have fuzzy SLs, it would be more realistic to have a 

pC  which is also fuzzy, since a fuzzy capability index 
could be more informative rather than a precise 
number. In this situation Parchami et. al. [17] 
introduced PCIs as fuzzy numbers. They used fuzzy 
numbers such as )(),,(),,( RTuuuuuu FcbaTcbaU ∈=  
and )(),,(),,( RTllllll FcbaTcbaL ∈= for engineering 
specification limits and they gave the following 
definitions. 
Definition 3.1  A process with fuzzy specification 
limits, which we call a fuzzy process for short, is 
one which (approximately) satisfies the normal 
distribution condition [9]. 
Definition 3.2  Let ∈),,(),,,( llluuu cbaLcbaU  

)(RTF be the engineering fuzzy specification limits, 
where lu ca ≥ . Then the new fuzzy PCIs are defined 
as follow 
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note that pC~  is useful when m=µ , where 
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where T  is target value. 
   
 

4   Ranking function 
In the sequel sections we are going to give a fuzzy 
confidence interval, where comparing fuzzy 
numbers is an emergent and so an ordering approach 
is needed. We need a criterion for comparison of 
two fuzzy subsets. A simple but efficient approach 
for ordering of the elements of )(RF  is to define a 
ranking function RR →)(:FR  which maps each 
fuzzy number into the real line, where a natural 
order exists, see [14]. Define the order 

R
≤  on )(RF  

by 
BA

R

~~
≥  iff )~()~( BRAR ≥ ,  

BA
R

~~
≤  iff )~()~( BRAR ≤ , 

BA
R

~~
=  iff )~()~( BRAR = , 

where A~  and B~  are in )(RF . 
Several ranking functions have been proposed 

by researchers to suit their requirements of the 
problems under consideration. For more details see 
[1, 21]. The Ranking function proposed by Roubens 
[4, 18] is defined by 

( )∫ +=
1

0

~~
2
1)~( dαAsupAinfAR ααr . 

From now on, if rR  is the Roubens’s ranking 
function, then we write 

rR
≤  simply as ≤ . 

One can easily prove the following lemmas. 
Lemma 4.1  If )(),,( RTFcbaT ∈ , then the 
Roubens’s ranking function reduces to following 

( )
4

2),,( cabcbaTRr
++

=  .                  (12) 

Lemma 4.2  Let R∈nm, , )(),,( RTFcbaT ∈  and 
02 ≥++ cab . Then according the Roubens’s 

ranking function  

nm ≤  iff m⊗ ncbaT ≤),,( ⊗ ),,( cbaT . 
 
 
5   Fuzzy confidence intervals for fuzzy 
PCIs 
Substituting the standard deviation in (9) will 
provides a point estimate for pC~ , which we denote 

it by pĈ~ . Since pĈ~ , like other statistics, is subject to 
sampling variation, it is critical to compute a 
confidence interval to provide a range which 
includes the true pC~  with high probability. 
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Definition 5.1  Let )(, RTFBA ∈  and BA ≤ . The 
fuzzy interval [ ]BA,  is the set 

[ ] { }BCAFCBA T ≤≤∈= |)(, R . 
Note that [ ]BA,  is nonempty, since [ ]BABA ,, ∈ . 

Suppose that the set of all random samples of size 
n  which are possible is )(nX . 
Definition 5.2  Any function )(: )( RT

n FXA →  is 
called a fuzzy statistic. Note that ),,( 1 nXXA L  

only depends on nXX ,,1 L  and no any unknown 
parameters. When the observation ),,( 1 nxx L=x  
is given, then the value of the statistic, )(xA  is just 
one triangular fuzzy number. 

Let X be a measurable random variable on the 
probability space Pr),,( FΩ  and ),,( cbaTT =  

)(RTF∈  such that 02 ≥++ cab . We define  

X( ⊗ )())( ωω XT = ⊗ Ω∈∀ω,T . 

Then by Lemma 4.2, we can see that 
=≤≤Ω∈ })(|{ 21 kXk ωω                               

1|{ kΩ∈ω ⊗ )(ωXT ≤ ⊗ 2kT ≤ ⊗ }T .   (13) 

Now we can give the following definition. 
Definition 5.3  Let X be a measurable random 
variable on the probability space Pr),,( FΩ , 

R∈21,kk  and )(),,( RTFcbaTT ∈=  such that 
02 ≥++ cab . Then by (13) we define that  

1Pr(k ⊗ XT
rR
≤ ⊗ 2kT

rR
≤ ⊗ ) α−= 1T , 

if and only if 
( ) α−=≤≤ 1Pr 21 kXk , 

and we say that [ ]BA,  is a )%1(100 α−  fuzzy 

confidence interval for X ⊗ T , where 

1kA = ⊗ T  and 2kB = ⊗ T  are the observed 
fuzzy statistic as triangular fuzzy numbers.  
Theorem 5.1  Suppose that nXXX ,,, 21 L  are 
independent, identically distributed random 
variables with ),( 2σµN  and ),,( uuu cbaU  

)(RTF∈ , )(),,( RTlll FcbaL ∈  be the engineering 

fuzzy specification limits, where lu ca ≥ . The 

following interval is a )%1(100 α−  fuzzy 

confidence interval for pC~  
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Remark 5.1  Let in a fuzzy process (1.4,4.5) be a 
95% confidence interval for σ . A pictorial 
representation of 95% fuzzy confidence interval, 
drown by Maple software, for pC~  is given in the 
Fig.1.  
 

)(~̂ xC p  
 
   
   

                    
x   

 
                                                                              s  
 

Fig.1. pictorial representation of 95% fuzzy confidence 
interval for 

pC~  
 

Note that as s  increases the pĈ~  tends to a sharper 
fuzzy triangular number. The fact can be seen in the 
Fig.1 where the fuzzy confidence bounds are shown 
in bold. 
Remark 5.2  Finding a fuzzy confidence interval for 

pkC~  is not as easy as for pC~ . We will study such 
fuzzy intervals elsewhere.  
Remark 5.3 When the process specification limits 

),,( uuu cbaU  and ),,( lll cbaL  are precise numbers 
and hence uuu cba ==  and lll cba == , in other 
words when they are indicator functions, then the 
introduced fuzzy confidence interval in Theorem 5.1 
is a precise interval and it coincides to traditional 
confidence interval. 

Now we apply our approach to find a fuzzy 
confidence interval for pC~ . 
Example 5.1 For a special product suppose that the 
specification limits are considered to be 
“approximately 4” and “approximately 8” which are 
characterized by )()6,4,2( RTFL ∈  and )9,8,7(U  
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)(RTF∈ ; respectively (see Fig.2). Assume that the 
process mean µ  is 6 and the estimated process 
standard deviation is 32 .  

     
                  )6,4,2(L                          )9,8,7(U  

 
 x   

 
Fig.2. The membership function of fuzzy process 

specification limits in Example 5.1 
 

 
    )(~̂ xC p

 
 

 
  x   

 
Fig.3. The membership function of fuzzy process 

capability index in Example 5.1 

 
By (9) we can estimate pC~  with =pĈ~  

( )75.1,1,25.0T . Hence, pĈ~  is “approximately one”, 
as shown in Fig.3. 

Consider estimates of pC~  based on two 
samples from the same process, but with different 
sample size; 95% fuzzy confidence intervals for 
each sample have been calculated using the Theorem 
5.1 

)9.2,6.1,41.0(~)96.0,55.0,14.0( TCT p ≤≤ , 
for 10=n  and 

)13.2,29.1,3.0(~)21.1,69.0,17.0( TCT p ≤≤ , 
for 41=n . 

A large sample size results in more accuracy in 
the estimate, as seen in the tighter fuzzy confidence 
interval for the large sample size, see Fig.4. This 
example shows the danger of just looking at a point 
estimation only, without qualifying it via fuzzy 
confidence intervals. 

 
[                                               41=n  
                                               10=n  

 
          x   

Fig.4. The membership function of fuzzy confidence 
intervals for 

pC~  index in Example 5.1 

 
Our observation leads us to the following open 

problem. 
Open problem:  Let  
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6   Conclusion  
If we define the specification limits (SLs) by fuzzy 
quantities, it is more appropriate to define the 
process capability indices as fuzzy numbers. Easily 
we can obtain point estimation for these fuzzy 
process capability indices, but we would never 
expect this point estimate to be exactly equal the 
parameter value, so we often also compute a 

)%1(100 α−  confidence interval for parameter.   In 
this paper we introduced a )%1(100 α−  confidence 

interval for pC~  fuzzy process capability index, 
when the engineering SLs are triangular fuzzy 
numbers. A meaningful application of this new 

)%1(100 α−  fuzzy confidence interval for pC~  is 
emerged and clarified by an example. 
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