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Abstract: - In this paper an accurate nonlinear model of induction motor using an artificial neural 
network (ANN) is given. This modeling technique is done by using the data from the system 
inputs/outputs information without requiring the knowledge about machine parameters. The ANN 
training is carried out off-line using the Levenberg-Marquardt algorithm. Then, the proposed neural 
network model is used as predictor for predictive control with reference model to track speed and 
flux profiles, where the cost function is minimized by Newton-Raphson method. Results of 
simulation show that the proposed model is accurate under both transient and steady state 
conditions. 
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1 Introduction 
The induction machine is the workhorse of industry. 
It is more rugged, reliable, compact, efficient and 
cheap in comparison to other motors used in similar 
applications. With the advancement of power 
electronics and DSP technology advanced control 
techniques for induction motor which were once 
thought to be impractical can now be implemented 
in real-time. This is particularly true in the 
aluminum industry for which part of this work will 
be applied, where a host of processes require 
efficient control of speed and high performance 
torque response.  The problem is often compounded 
by the fact that the varying machine parameters are 
difficult to determine. 

The induction motors (IM) constitute a 
theoretically interesting and practically important 
class of nonlinear systems. The control task is 
further complicated by the fact that induction motors 
are subject to unknown (load) disturbances and 
change in values of parameters during its operation. 
The control engineering community is faced then 
with the challenging problem of controlling a highly 
nonlinear system, with varying parameters, where 
the regulated outputs, besides some of them being 
not measurable, are perturbed by an unknown 
disturbance signal [1-3]. 

In recent years, the use of artificial neural 
networks for nonlinear system identification and 
control has proved to be extremely successful 

because of their adaptability to a changing 
environment, which allows them to emulate time 
varying behavior of nonlinear plant, and their 
robustness with respect to noise. A few studies have 
been reported on the induction motor modeling 
using neural networks for obtaining speed or rotor 
flux model [4-6] but not for both.  

Among the applications of the neural network 
model in control is neural predictive control (NPC). 
The predictive control method is traditionally used 
for industrial process control and a large number of 
implementation algorithms have been presented in 
literature such as extended prediction self adaptive 
control, generalized predictive control and unified 
predictive control [7]. Most of these control 
algorithms use an explicit process model to predict 
the future behavior of the plant and because of this, 
the term Model based predictive control (MBPC) is 
often used. The classical MBPC algorithms use 
linear models for prediction, but when the process is 
nonlinear, the use of linear model becomes 
impractical, and identification of nonlinear model 
for control becomes a necessity.   

In this paper, we present an input-output 
modeling for the induction motor using an artificial 
neural network for obtaining a model with flux and 
speed as outputs and its application in predictive 
control to track speed and flux profiles. The paper is 
organized as follows: in section 2, we give the 
mathematical input-output model for the induction 



motor by differentiating the outputs with Lie 
derivative [2, 3] and expressing all states and inputs 
in terms of these outputs [1, 8]. In section 3, the 
system modeling by neural networks is given. In 
section 4, the application of the ANN model as 
predictor in predictive control is detailed. Finally, 
the simulation results using the neural networks 
model are presented. 

 
 

2 Induction Motor Mathematical 
Model 
Under the assumption of linearity of the magnetic 
circuit, the well-known (α-β) induction motor model 
established in the stationary reference frame is given 
by the following fifth-order continuous time model 
 

guf(x)x +=&                                                       (1) 
                                               

where 
[ ]Trrss ii ωφφ βαβα=x , [ ]Tss uu βα=u  

 
The state x belongs to the set  
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Vector function f(x) and constant matrix g are 
defined as follows                                        
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isα , isβ denote the stator currents, 

βα φφ rr , the rotor 
fluxes, ω the rotor speed and usα ,  usβ the stator 
voltages. 

The information about the speed and the rotor 
flux norm is known by estimation; we choose the 
outputs of the system as 
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The functions f(x), g(x) and h(x) are sufficiently 
differentiable. 

Input-output modeling formulation is carried out 
by using Lie derivative until we get relations 
between the outputs and the inputs. In order to 
alleviate the burden of input-output model 
computation with Lie derivative, the second output 
is transformed as  

2
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The following notation is used for the Lie 
derivative of state function ℜ→ℜ nxh :)( along 
a vector field    f(x) = ( f1(x),..., fn(x))  
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Iteratively, we have  )( )1( hLLhL i

ff
i
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For the proposed model, we get the input-output 
relations by the second derivative. 
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To get the outputs (2), we use this transformation 
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In order to have the relation between the inputs 

and outputs from (5) and (6), we need to express all 
the machine states in terms of outputs using the 
motor equations. For sake of simplicity we prefer to 
work in complex form.  

The electro-mechanical equation is given by 

Lrr Tfip
dt
dJ −−= ωφω )Im( *                         (7) 

(5)



where Im (.): Imaginary part and δφφ j
r e=  

The rotor electrical equation is given by 

0=+− rrr
r iRjp

dt
d ωφφ                                   (8) 

 
The torque produced by the motor is given by  
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set  α = δ - pθ 

Substituting Tem from (9) in (7), the electro-
mechanical equation becomes  

L
r

Tf
R
p

dt
dJ −−= ωαφω

&2                            (10) 

 
then, with assuming that the disturbance  TL = 0 
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and with (2) 
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so, for the rotor flux, we have 
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Using (8) and (13), the rotor current can be 

expressed as 
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Using (13), (14) and the following rotor flux 
equation: 

rrsr iLMi +=φ                                                  (15) 
 
we obtain the following stator current:  
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From (14), (16) and the following rotor flux 
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The stator flux is given by 
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Finally, the stator voltage can be expressed as 
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The mathematical input-output model (5), with 

all states expressed in terms of the outputs, is 
difficult to solve and to implement in advanced 
control strategies like nonlinear predictive control. 
Therefore, we try to approximate it to a nonlinear 
model less complicated using ANN as explained in 
the next section. 

 
3 Neural Network Modeling 
The goal of modeling a nonlinear system by neural 
networks is to build a mathematical model which 
emulates its dynamic behavior, given some prior 
knowledge about the system and information on 
inputs and outputs. For an induction motor, it is 
possible to estimate the various machine quantities 
in both the steady state and transient state by using 
an ANN.  The ANN can accurately describe the 
nonlinear behavior of the machine without requiring 
the knowledge of machine parameters [4-6]. 

The objective is to use a NNARX (Neural 
Network AutoRegressive eXternal input) ĝ[.] to 
approximate the input/output model of the induction 
motor. This is essentially a one-step ahead 
prediction structure in which we use past inputs and 
outputs to predict the current output The 
feedforward structure is used for application in 
neural-predictive control [9], where [.] contains data 
from the plant. The regression vector for this 
network is given by 
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The predicted output is parameterized in terms of 

network weights w by 
]),([ˆ)(ˆ wy kgk ϕ=                                                (22) 

 
The ANN used for induction motor modelling is 

a feedforward multilayer network as shown in Fig. 
1, with one hidden layer activated by tanh 
(hyperbolic tangent) function and output layer 



activated by linear function. The orders and delay of 
this structure are chosen intuitively where na = nb =1 
and nk =1. The training of ANN is done off-line by 
using the Levenberg-Marquardt (LM) optimization 
technique which aims to minimize the mean square 
error between the plant output and the ANN output 
over the training data set. The procedure is based on 
batch mode, where the weights updating is 
performed only after the entire training set has been 
applied to the network [10]. The training data set 
(inputs and desired outputs data) is taken from 
vector controlled induction motor drive. In order to 
have a good training, the data must contain 
sufficient information about the system dynamics.  

For LM algorithm, the performance index to be 
optimized is defined as 
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where w is the vector of all weights of the network, 
djk is the desired value of the jth output and the kth 
pattern, ŷjk is the actual value of the jth output and 
the kth pattern, P is the number of patterns and O is 
the number of network outputs. 
 
 
 
 
 

 
 
 
 

Fig.1. NNARX model for induction motor. 
 
 

4 Neural Predictive Control 
The neural predictive control is basically a type of 
model based predictive control, where the model for 
prediction is a neural network. The model predictive 
control strategy is based on the use of a model to 
predict the future output trajectory of the process. 
Next, the algorithm computes the future control 
actions to minimize a performance index at each 
sample k, and the first action is applied. The 
procedure is repeated at sample k+1.   

The j-step ahead prediction of the system output 
by using the NNARX model is shown in Fig. 2 and 
has this form 
ŷ (k+j) = ĝ[ ŷ (k+j-1),…, ŷ (k+j-na),                    (24) 
                   u (k+j-nk),…, u (k+j-nb-nk+1) ] 
 

The initial inputs to the ANN are given by the 
plant. 

The cost function to be minimized is  
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with the following assumption 
∆u (k+j) = ∆uref (k + j)  for  j ≥ Nu                         (26)  
                  
Where 
ŷ = T]ˆˆ[ φω ; yref = T

refref ][ φω  

u = [usα   usβ ]T ; uref = [usαref     usβref ]T 

 

Nu is the control horizon, N1 the minimum 
prediction horizon, N2 the prediction horizon, λ is 
the control weighting factor and ∆ is the difference 
operator   ∆u (k) = ∆u (k) - ∆u (k-1). 

The reference control signals usαref and usβref are 
obtained from references 

refref φω ,  and the nominal 

values of the machine parameters in equation (20), 
this model is the reference control model. 

After the training is over the ANN are arranged 
as shown in Fig. 3 for using as the predictor.  After 
minimization of the cost function is done, the first 
value u(k) of the optimal control is applied to the 
system, whereas the whole control vector U is used 
by NNP according to the receding horizon strategy. 

 
 
 
 
 

Fig.2. Neural Network Predictor Structure (NNP). 
 
 
 

 
 
 
 
 

 
 
 

Fig.3. Block Diagram of NPC for IM. 
 

With the Newton-Raphson (NR) method, ℑ  is 
minimized iteratively to determine the best control 
vector [11]. 
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The NR update for U(n+1)(k) is 
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where n is the number of iterations. 
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The quantities )()( kk U∂∂ℑ  and 
22 )()( kk U∂ℑ∂  are the Jacobian and Hessian 

matrices (the first and second derivatives of cost 
function) which are calculated from (25), (26) by 
using NNARX plant model (22) and tanh propriety. 
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In order to avoid the computation of the inverse 
of the Hessian matrix, equation (28) is rewritten in 
the form of a system of linear 
equation ( )
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is solved for X = U(n+1)(k)-U(n)(k) by using LU 
decomposition. 

When solving for X, calculation of each element 
of the Jacobian and Hessian is needed for each NR 
iteration. 

 
5 Simulation Results 
The simulations have been carried out to verify the 
performance of neural network based input-output 
modeling and the neural predictive controller.  

For the induction motor modeling, the discrete 
NNARX model with na = nb = 1 and nk = 1 in the 
structure (21) is selected; so, the neural network 
used for this model has 4 nodes in the input layer 
(the previous values of inputs and outputs from the 
induction motor), 10 nodes in the hidden layer and 
two nodes in the output layer for rotor speed and 
rotor flux norm. 

To train the ANN, the training data set is 
collected from vector controlled induction motor (all 
inputs and outputs are known by measurement and 
estimation respectively). In order to check the 
influence of the model parameter variations and 
disturbances on the ANN, the rotor resistance Rr and 
the load TL are varied. The variations of Rr  have the 
values in time intervals (second) as: 2.61 Ω in [0 2], 
3.61 Ω in [2 3], 1.61 Ω in [3 4], finally 2.61 Ω in     
[4 5], and for TL disturbance: 0 Nm in [0 0.5], 0.2 
Nm in   [0.5  2.5], 0.38 Nm in [2.5  4], and 0.28 Nm 
in [4 5]. 

During training of the ANN, we use a training 
data set which consists of the inputs to the ANN and 
desired outputs. The desired outputs are compared 
with the ANN outputs for updating the weights. The 
results of simulation during the training are shown 
in Fig. 4 – 5, where the speed and the rotor flux 
norm obtained by the ANN model of the motor are 
compared with those used in training data set.  

 
         Fig.4.a. Rotor speed from Motor and ANN. 
                  b. Motor and ANN speed error. 
 

 
       Fig.5.a. Rotor flux norm from Motor and ANN. 
                 b. Motor and ANN flux error. 
 

It is observed from the results of simulation that 
the proposed model using an ANN gives satisfactory 
results. 

The trained ANN model is placed in the NPC 
control loop as shown in Fig. 3, the parameters of 
the index performance (25) for neural predictive 
controller are chosen by trial and error method in 
order to produce the desired response. 
 N1=1, N2 = 5, Nu = 2, λ = 2.107 

In total, five trained ANN are connected as 
shown in Fig. 2 and work as predictor. The control 
model reference is carried out using the formula 
(20) where the reference outputs are shown in Fig. 6 
and 7. However, the variations of Rr and TL are 
different from the ones considered earlier. These 
values are (i) for Rr 2.61 Ω in [0 2], 2Ω in [2 2.5] 
and 2.2Ω in [2.5 5] and (ii) for TL disturbance: 0 Nm 
in [0 2] and 0.25 Nm in [2 5]. They are used to 
check the performance of the ANN predictor with 
other variations not used in training.  

Fig. 6 and 7 give respectively the responses 
(speed and flux) of the NPC induction motor drive 
system and their corresponding errors with 
references.  As shown, the tracking performance of 
the proposed NPC system is satisfactory achieved, 



where the controller tries to reduce the influence of 
the Rr variations when the outputs follow the 
references.  

 

 
           Fig.6.a. Rotor speed from Motor and ANN. 
                     b. Motor and ANN speed error. 
 

 
         Fig.7.a. Rotor flux norm from Motor and ANN 
                   b. Motor and ANN flux error 
 
 
6 Conclusion 
In this paper, we present an application of neural 
networks for input-output modeling of an induction 
motor, which permits to approximate the process by 
a NNARX model.   The choice of neural network 
structure depends upon the performance needed.  
The ANN training is done off-line using the 
Levenberg-Marquardt algorithm. The advantage of 
this modeling by ANN is the ability to have a 
nonlinear model with good performance without 
requiring the knowledge of machine parameters 
which may vary in time. 

The controller development follows the 
generalized predictive control methodology with the 
process represented by the NNARX model. A 
Newton-Raphson method is used for cost function 
minimization.  

The results of simulation show that the 
performance of the NNARX model and the NPC 
controller are satisfactory. 
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