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SLOVENIA

ABSTRACT

The cobweb model of competitive market dynamics has been examined in the form of system dynamics model. The classical
formulation of the cobweb demand-supply model has been transformed in the set of equations suitable for system dynamics
modelling. The model has been expanded by the time parameter∆t which enables the stability analysis of the model for the
change in the∆t. The structure of the model has been presented and key relationships in the model have been examined. The
cyclical response of the system which is dependent on the demand∼supply parameters and eigenvalues of the characteristic
equation has been numerically examined.

Keywords: Cobweb, Anticipation, System Dynamics, Periodicity, Cycle

1. INTRODUCTION

Cobweb model presents the market demand-supply adjust-
ment. It is typically viewed as the model of the agricul-
tural pricing mechanism. The story behind the model is
briefly explained as the common agriculture market adjust-
ment mechanism: ”The quantity offered for sale this year
depends on what was planted at the start of the growing
season, which in turn depends on the last year’s price. Con-
sumers look at the current prices, though, when deciding to
buy. The cobweb model also assumes that the market is per-
fectly competitive and that supply and demand are both lin-
ear schedules.” For clear and extensive introduction to the
topic one should see [9]. In fact, the model derives from
Evans model which discusses priceP (t) as a function of
demandD(t) and suppliesS(t) in the free market analyzed
in previous research [6]:

P (t + ∆t) = P (t) + ∆t(D(t) − S(t)) (1)

For∆t = 1 we obtain the difference equation known as the
cobweb Model. We will consider the demand and supply
function under three different conditions:

D(t) = a0 − a1P (t), S(t) = b0 + b1P (t) (2)

D(t) = a0 − a1P (t), S(t) = b0 + b1P (t − 1) (3)

D(t) = a0 − a1P (t), S(t) = b0 + b1P (t + 1) (4)

The definition for parametersa0, a1, b0, b1 > 0 is always
satisfied. For condition stated by Eq.2 assume a simultane-
ous time action for demand and suppliers. Whena1 > b1,
the price in Eq.1 is for any initial condition oscillatory tran-
sit to equilibrium, whena1 = b1 we have a stable cycle, and
whena1 < b1 the systems are unstable. For condition stated
by Eq.3 the suppliers’ action is delayed when demand find-
ings are the same as in case stated by Eq.2, wherea1 > b1,
and whena1 = b1 only the period and amplitude of the
price is higher. Whena1 < b1, the system is unstable but
the amplitude is higher than in condition stated by Eq.2. In
situation stated by Eq.4 suppliers anticipate the price on the
market. In this case there is no price oscillation for the ini-
tial condition even whena1 < b1.

The results obtained in the simulation of price dynamics
for the function of demand and supply with different infor-
mation defined in situations determined by Eq.2, Eq.3 and
Eq.4 show that information, which represents the rational
expectation of price in situations determined by Eq.2 and
Eq.3, does not remarkably influence the dynamics of price,
though in situation determined by Eq.2 information regard-
ing the price of goods is available immediately. Only the
elongation about the equilibrium price is smaller. In case
of Eq.4 the anticipation of price presenting a direct transi-
tion to the equilibrium from the initial value is observed.
Eq.4 directly proves the possibility of rational expectation
caused by anticipatory information. The modern commu-



nication means and better modelling (i.e. form of knowl-
edge) could provide anticipatory information about stock,
which represents the rational expectation of stock and can
improve market behavior [10], [11], [12]. To speculate fur-
ther: Some people probably can predict the market price by
intuition and achieve a better position in the market. The
average market price of goods is probably the average value
of the portion of the situations determined by Eq.2, Eq.3 and
Eq.4 situations governed by the actors.

The model in question therefore has all the character-
istics of classical System Dynamics (SD) models: equilib-
rium, competitiveness, human perception, delay and adjust-
ment but somehow it is avoiding to be settled in the com-
mon SD model bank of each SD modeler. The main reason
for elusiveness of the cobweb model is in it’s original form
which is not suitable for the straight transformation to the
common elements such as LevelL and RateR. The func-
tions of demandQd(k) and supplyQs(k) can be specified
in the form:

Qd(k) = a + bP (k) (5)

Qs(k) = c + dP (k − 1) (6)

wherea, b, c andd are parameters specific to individual mar-
kets. P (k) andQs(k) should be restricted to the positive
values. In the cobweb model it is assumed that in any one
time period producers supply a given amount (determined
by the previous time period’s price) and then price adjusts
so that all the product supplied are bought by customers. If
we write this in the form of equation thenQd(k) = Qs(k)
which enables us to state that the price is:

P (k) =
d

b
P (k − 1) +

c − a

b
(7)

Equations 5, 6 and 7 are not quite in the proper form in
order to perform the transformation to the SD model. One of
the things is the time argumentk− 1. The other is the miss-
ing RateR elements and corresponding∆t. One should
expect that the transformation will provide the known equa-
tions in the familiar cobweb model structure form. The de-
veloped model should enable us to examine the properties
of the cobweb model and also to consider it’s structural and
incursive perspective. There are several approaches in mod-
ification and analysis of cobweb dynamics [3], [4], [5], [7]

2. SEPARATION OF SYSTEM ELEMENTS

Dynamically stable response indicates the periodical solu-
tion which will be of interest in further examination of the
model. In general a solutionyn is periodic ifyn+m = yn

for some fixed integerm and alln. The smallest integer for
m is called period of the solution. In the classical cobweb
model case the solution for dynamically stable system is a
two-cycle solution. In general the following definition will
be applied [8]:

Definition 2.1 If a sequence{yt} has e.g. two repeating
valuesy1 andy2, theny1 andy2 are called period points,
and set{y1, y2} is called a periodic orbit.

Periodical response of the system is important because
real agricultural systems depend on the cyclic behavior and
could be controlled only by regarding the period of such
systems. Examples from real cases could easily be found in
crops as well as in the stock.

The classical structure (or more concise; notion) of the
cobweb model states that the Price and Quantity are related.
However the structure can be represented in a different way.
By transforming the cobweb model to SD form the model
could become non-autonomous depending on the variable
∆t. The following two equations represent the different for-
mulation of the cobweb model:

Qs(k + 1) = c + d
Qs(k) − a

b
(8)

P (k + 1) =
c + dP (k) − a

b
(9)

This reformulation representsQs and P as the non-
related quantities. The only bound that exists are the co-
efficients. In order to formulate the complete SD model the
rate elements should be determined:

RP (k) = P (k + 2) − P (k + 1) =

=
d

b
(P (k + 1) − P (k)) (10)

RQs
(k) = Qs(k + 2) − Qs(k + 1) =

=
d

b
(Qs(k + 1) − Qs(k)) (11)

In order to meet initial conditions of the model the
Qs(k − 1) should be determined:

Qs(k − 1) = a +
b

d
(Q(k) − c) (12)

Equations forP andQs in standard SD form are the follow-
ing:

P (k + 1) = P (k) + ∆tRP (k) (13)

RP (k) =
d

b

(

P (k) − bP (k) − c + a

d

)

(14)

Qs(k + 1) = Qs(k) + ∆tRQs
(k) (15)

RQs
(k) =

d

b

(

Qs(k) −
(

a +
b

d
(Qs(k) − c)

)

)

(16)

Eqs. 13, 14, 15 and 16 represents the cobweb model in sep-
arated form suitable for SD modelling. Note, that the terms



for P andQs are related only to the coefficientsa, b, c, d
andp. P (k +1) is dependent only on the value ofP (k) and
coefficientsa, b, c, d, p and not on theQs. Respectively for
theQs(k + 1).

3. ANTICIPATIVE FORMULATION

TheP andQs depend only on the parameter valuesa, b, c, d
andp i.e. the initial conditions. Eqs. 13, 14, 15 and 16
enable the determination of entire anticipative (future event)
chain while equation:

P (k − 1) =
bP (k) − c + a

d
(17)

and Eq.12 enable the determination of feedback (past
event) chain. The dynamics of interest is therefore the chains
dynamics which is dependant on the parametersa(t), b(t),
c(t), d(t) andp(t). Both chains are actually dependant on
strategy dynamics which could be formulated as the
f(a, b, c, d, p, t).

Application of anticipative algorithm and inspection of
gained equations with Dubois’ [1] formulation of logistic
growth and previous research [6] yields the following set of
equations for the anticipative cobweb model:

P (k + 2) =
d

b

(

A −
(bB − c + a

d

)

)

(18)

Qs(k + 2) =
d

b

(

C − a − b

d

(

D − c
)

)

(19)

with initial conditions:

P0(k + 1) =
p − a

b
(20)

P0(k) =
bP0(k + 1) + a − c

d
(21)

Qs0(k + 1) = p (22)

Qs0(k) = a +
b

d

(

Qs0(k + 1) − c

)

(23)

The coefficientsA andB in Eq.18 could be replaced by the
termsP (k+1) orP (k) while coefficientsC andD in Eq.19
by Qs(k + 1) or Qs(k). This yields 16 different combina-
tions of system defined by Eq.18 and Eq.19 that should be
studied.

The system combination further examined will have the
following terms:A = P (k+1), B = P (k), C = Qs(k+1)
andD = Qs(k). This yields the following set of equations:

P (k + 2) =
d

b

(

P (k + 1) −
(bP (k) − c + a

d

)

)

(24)

Qs(k + 2) =
d

b

(

Qs(k + 1) − a − b

d

(

Qs(k) − c
)

)

(25)

Eq.24 and Eq.25 could be reformulated in order to show the
dependency of the future-present-past events:

P (k) =
bP (k − 1) + a − c

d
+

b

d
P (k + 1) (26)

Qs(k) =
b

d
Qs(k + 1) +

b

d
Qs(k − 1) + a − bc

d
(27)

Eq.26 and Eq.27 state that the value of the present is
dependent on the past as well as on the future. This para-
doxical statement is realizable since the formulation of
feedback∼anticipative chain could be stated. One might no-
tice, that the level and rate elements are dependant only on
the coefficients and initialization values.

4. RESULTS

Fig. 1 represents the helix-like response of the system at the
parameters:a = −12.43, b = 20, c = 18, d = −12.43,
p = 160, andk = 4000. The helix-like shape shows the be-
havior of the system which is bounded by the circular shape.
The helix is transformed from e.g. pentagon helix to quad
helix etc. There is an interesting dynamics that could be
observed at the transitions from one cyclic equilibrium to
another.
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Figure 1: Helix response of the system.

The periodic responses of the system were gained ac-
cording to the parameter values gathered in Table 1. The
change was made in parameterd which yielded the syn-
chronization patterns as shown by the shape column. The
parameter values were gained by the simulation where the
the range of parameterd was set as of[−40, 40] with ∆d =
0.001. The condition for parameter values determination
was set by the rule of acceptable error between simulation
steps and definition 2.1 of synchronization .

Equilibrium condition for theP segment of the hyper-
incursive cobweb system could be stated as:

d

b

(

p − a

b
−

p−c

d
− c + a

d

)

=
p − a

b
=

p − c

d
(28)



The equilibrium values of the parameters for theP segment
of the system are:a = c = p andb = d.

Equilibrium condition for theQs segment of the hyper-
incursive cobweb model could be stated as:

d

b

(

p − a − b

d

(

a +
b

d
(p − c) − c

)

)

= a +
b

d
(p − c) (29)

Qs segment of the system has no solution for the equilib-
rium values of the parameters. When the equilibrium con-
ditions for theP segment of the system are considered than
in fact in all the cases theQs segment of the system could
not be in stable state. Graphical presentation of the equilib-
rium conditionsa = c = p andb = d is shown in Fig. 2.
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Figure 2: Response of theQs segment of the system while
in equilibrium

Corollary 4.1 Equilibrium condition for the P segment of
the anticipative cobweb system defined by the equations from
Eq.20 to Eq.25 is:a = c = p and b = d. At this con-
ditions, theQs segment of the system has the response of
hexagon shape with vertices{(a, 0), (a, a), (0, a), (−a, 0),
(−a,−a), (0,−a)} in Qs(k), Qs(k + 1) mapping.

While the response of the system for theP segment is in
equilibrium, theQs segment of the system has the hexagon-
like shape with significant dimension of parametera value
and edges dimension ofa anda

√
2.

Table 1: Synchronization parameter values

Shape Description a b c d p

Triangular 400 −20 −50 20.0000 160

Quad 400 −20 −50 −0.0010 160

Pentagon 400 −20 −50 −12.3671 160

Pentagram 400 −20 −50 32.3620 160

Hexagon 400 −20 −50 −20.0000 160

Nonagram 400 −20 −50 −6.9450 160

Hexagram 400 −20 −50 15.3070 160

Fig. 3 shows the change in direction coefficientskP and
kQs for the demand/supply curves. The intersection of the
curves and poles indicates the periodicity response of the
system. The range of the cyclical behavior is determined
by the classical imaginary solution of the dynamical system
which is in our case defined by the condition

λ =
−2b + d ±

√
−4b2 + d2

2b
(30)

Corollary 4.2 Triangular ( ) i.e. three-period response
in 2-dimensional mapping is determined by the condition
b = −d.
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Figure 3: Direction coefficients for the cobweb response of
the system

In order to gain the term for the period in theP values
one should apply Def.2.1. The values for times1, . . . , 4
should be symbolically expressed. By inserting the Eq.20
and Eq.21 into Eq.24 the following term is gained:

P (k + 2) =
d

b

(

p − a

b
− a − c + b(p−c)

d

d

)

(31)

By repetition of similar procedure the equation for
P (k+3) considering the period 4 condition i.e.:P (k+3) =
P (k) one should get the following equation:

d

b

(

d

b

(p − a

b
− a − c + b(p−c)

d

d

)

− p − c

d

)

− p − c

d
= 0

with solutionb = −d ∈ ℜ/{0}.
Fig. 4 shows parametric graph of the change coeffi-

cientskP andkQs. The sequence of parametric plot is marked
with the numbers next to the graph lines.
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Figure 4: Sequence on the parametric graph of direction
coefficientskP andkQs

5. CONCLUSION

The story revealed from the developed hyperincursive model
rises the following questions: a) Does change in the strategy
change the structure or does it change only the relations be-
tween the elements of the structure? b) Does changing of
the strategy change the future as well as the past? Change
in the strategy would mean new and different future and
should also mean different past if the change in the strat-
egy would occur earlier. The hyperincursive cobweb model
enables us to change the future as well as the past chain of
events. However different examination of the system dy-
namics is proposed where change in the key parameters is
performed while observing the change in complete future
and past chain rather than observing the classical time re-
sponse of the system.
The following procedure proposition emerges which enabled
the anticipative formulation of the classical dynamic sys-
tem: since the hyperincursive systems are hard to determine
[2], [1], the developed anticipatory mechanisms should be
applied therefore the model should be a) transformed in the
separated form b) provide past-future chain property and c)
apply the hiperincursive structure to the studied model.
The developed model shows that by the statement of general
rule of the system the synchronization of entire feedback-
anticipative chain could be gained by setting the appropriate
strategy in the form of parameters value set which should be
time dependant.
The idea for the simulation proposed in the paper is quite
different from the common paradigm. The structure of the
model should yield the entire feedback-anticipative chain
and the observation of the entire system response should
be made. This provides the new and quite challenging re-
sponses which should initiate further interest and examina-
tion of proposed model.
One of the interesting responses from the model is the helix
like shape which is synchronized at the certain time steps.

Entire feedback-anticipative chain i.e. all point set is syn-
chronized according to the period of the system.
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