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Abstract: Division is one of the basic operations of arithmetic algorithms, but the cost associated to its hardware 

implementation exceeds the reasonable limits for most dedicated architectures. This paper provides a systematic 

algorithm that (a) transforms the constant coefficient division into a constant coefficient multiplication, 

selectable under some given constraints, and (b) optimizes the resulting multiplier by analyzing the quantization 

noise inherent to the finite wordlength implementation process. Consequently, this algorithm achieves reduced-area, 

high-speed constant coefficient dividers that maintain the accuracy in the range of represented numbers. The 

theorems and presented results confirm that the proposed algorithm computes the most suitable fraction under a 

given set of noise constraints. 
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1   Introduction 
Although extensive literature exists describing the 

theory of division [1]-[5], the implementation of this 

operation in dedicated hardware is too expensive for 

many applications. Generic division algorithms are 

divided into the following classes [6]: digit recu-

rrence [7],[8], functional iteration [9],[10], very high 

radix [11],[12], table look-up [13] and variable 

latency. Many practical architectures also combine 

several of these classes to achieve high speed and low 

latency, and to surpass given accuracy constraints [6]. 

Consequently, resulting architectures are exceedingly 

complex, and they must be simplified before its hard-

ware implementation. 

    Conversely, constant coefficient dividers [14]-[19] 

significantly reduce the implementation requirements 

of the operator, and their application is more suited to 

embedded applications. Their properties have been 

deeply analyzed to generate efficient binary to digital 

converters [15], but the obtained results are focused 

on coefficients whose values are factorized in terms 

2k and 2k ± 1, so they are not valid in the general 

case. Due to this fact, the most common types of 

implementation procedures perform constant multi-

plications of the quantized reciprocal values [16]-[19]. 

These procedures improve the performance of the 

divider (in terms of area, speed, latency, etc.), but they 

also introduce certain amount of quantization noise.  

    This paper analyses the quantization variations 

inherent to the finite wordlength implementation of 

constant coefficient dividers, and proposes some alter-

natives to provide more efficient implementations. 

Savings in resources directly improve area and speed, 

but the proposed procedure allows to minimize any 

other metric, such as power consumption. The 

theorems and results given prove that the optimal 

coefficients achieve significant reductions in area, 

while preserving the quantization noise below the 

specified constraint. 

    The structure of the paper is as follows: Section 2 

presents the basic algorithm and some theorems to 

formalize the selectable accuracy of the divider. 

Section 3 explains several alternatives to improve the 

application of the basic algorithm. Section 4 presents 

the comparative results for a representative set of 

constant dividers. Finally, section 5 summarizes the 

conclusions of this work. 

 

 

2   Proposed Algorithm 
Even though algorithms for generic division have 

evolved remarkably fast in the past decades, there 

has been little evolution in algorithms to perform 

constant dividers [14]-[19]. The formal steps tradi-

tionally followed to perform this operation are: 

1. Obtain the rational representation, q, of the 

reciprocal of divisor d. 

2. Truncate q to the number of bits selected to 

perform the operation, initially 1. 

3. Compute the output difference or noise power 

for the range of the input signal.  

4. If the specifications are not met, increase the 

number of bits and return to step 2.  



 
Fig. 1. Ideal and quantized responses of the divider (d = 10). 

Last two fractions computed by the algorithm when the 

output is truncated to zero fractional bits. 

 
Fig. 2. Differences between the ideal response and the 

computed ones. Maximum limits allowed for the variations 

when the output is truncated to zero fractional bits. 

This method is intuitive and it rapidly returns a valid 
constant coefficient, but the final value is restricted 
to a quantized rational representation of 1/d. As it will 
be shown, there are many other constants that meet 
the specifications (constant q is only one of this set), 
and the proposed algorithm supports the selection of 
other constants in order to improve the efficiency of 
the final divider. 
    The basic algorithm proposed here to generate 
efficient implementations of constant coefficient 

dividers has the following iterative scheme: 
1. Select a power of two, 2

k
, initially 2

0
. 

2. Find the nearest multiple of divisor d to the 
power of two, 2k, called A here. 

3. Multiply numerator and denominator of 1/d by A 

to obtain the equivalent fraction A / D. 
4. Substitute the denominator of the equivalent 

fraction, D, by 2k. Consequently, the computed 
fraction, A / 2k, only requires one constant coef-
ficient multiplication and one k-bit shift. 

5. Calculate the maximum difference, or any other 
selected criteria, between the ideal and the quan-
tized outputs in the valid range of the dividend. 

6. If the specifications are not met, increase k and 

return to step 2. 
The main features of this algorithm are: (i) the 
divider is automatically normalized (i.e. the algorithm 
detects the leading ‘1’ and operates the following k-1 
bits of q), thus it automatically computes the result 

with maximum precision; (ii) the parameters of this 
procedure, specially the end conditions, are easily 
specified; and (iii) in each iteration, the multiplying 
constant A is selected according to the target criteria: 
minimum implementation complexity, maximum 

Signal-to-Noise Ratio (SNR), maximum range with 
outputs identical to the ideal divider, etc.  
    The following example compares the behavior of 
the two procedures. Let divisor d be equal to 10, 
dividend x be an 8-bit signed integer value, and let 

the result y be represented using 8 fractional bits. 
Assume that two's-complement and truncation are 
the representation and quantization strategies.  
    The value of q that performs the required division 
is 0.0001100110011…b. Using the 4-step algorithm, 
q is truncated and represented as 0.00011001b, so 
dividend x is multiplied by 0.09765625, instead of 
0.1 as it should. This difference can be significant 
depending on the specific value of x and the required 
precision of the result. In this example, the maximum 

difference is ±0.3. The application of the proposed 

algorithm, assuming identical hardware resources, 
returns A = 13 and 2k = 128. In this case, x is 
multiplied by 0.1015625, and the maximum error is 

reduced to ±0.2. The increased performance of this 
result clearly indicates the beneficial application of 

the proposed algorithm. 

    Figure 1 shows the ideal response and the last two 

fractions of the algorithm for d = 10. In this case, y is 

quantized to zero fractional bits, Q0F (for the sake of 

clarity), instead of the 8 fractional bits as in the 

example. The iterative search finishes when the 

difference between the two quantized results is zero 

in the whole range of values of the dividend. The 

quantized response is also given. Figure 2 shows the 

differences between the computed responses and the 

ideal one, and it also indicates the maximum 

variations allowed in this case. 

 

2.1 Mathematical Analysis 
The underlying principle of the presented algorithm is 

the following: The result of the divider is correct as 

long as the ideal and the computed quantized quotients 
provide the same values. Moreover, further improve-

ments or modifications are allowed iff this condition 

remains satisfied. These improvements can be carried 

out as a result of the theorems presented below. 

  ideal resp. (1/10) 
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Theorem 1: The SNR introduced by the computed 

fraction is independent of the range of the input 

signal. 

Theorem 2: As the algorithm evolves, the SNR of the 

computed fractions tends to infinity. 

Corollary: The SNR can be made as large as required 

by increasing the number of bits of the computed 

fraction. 

Theorem 3: When it searches for the nearest fraction 

below the ideal response (lower-nearest criterion), the 

maximum and minimum deviations of the iteration-k 

computed fraction are bounded by 
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This theorem assumes k >> log2 d, which is the general 

case after some iterations of the algorithm. 

Theorem 4: When it searches for the nearest fraction 

(nearest criterion) and the nearest fraction above the 

ideal response (upper-nearest criterion), the maximum 

and minimum deviations of the iteration-k computed 

fraction are respectively bounded by  
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This theorem also assumes k >> log2 d.  

    The mathematical proofs of these theorems have 

been extracted from this section to emphasize the 

operation and conclusions of the proposed algorithm. 
However, the examples provided throughout this 

paper confirm the validity of this analysis. 

    Figures 3-5 show the first four iterations of the 

algorithm for divisor d = 5 in the three cases. Each 
plot provides the ideal response of the divider 

(diagonal line in each plot), the computed fraction 

(circles), and the maximum and minimum error 

bounds (closer and more separated lines from the 
ideal response, respectively) allowed for the computed 

fraction in each case.  
Final remark: For simplicity, the theorems presented 

in this section assume integer arithmetic. However, 

the conclusions given here are also valid in rational 

dividers by applying the required normalization.  

 

 

3   Alternative Approaches 
This section describes some interesting variations of 

the basic procedure described in the previous section: 

(i) constant multiplication and division by rational 
values; (ii) use of range decomposition; and (iii) selec-

tion of the multiplicative constant A, according to the 

underflow strategy, to enhance the results of the 

proposed algorithm. 

   
Fig. 3. First four iterations of the algorithm (d = 5) when it searches the best fraction below the ideal response. 

   
Fig. 5. First four iterations of the algorithm (d = 5) when it searches the best fraction above the ideal response. 

  
Fig. 4. First four iterations of the algorithm (d = 5) when it searches the best fraction nearest to the ideal response. 



 
Fig. 6. Computation of the best fraction nearest to the ideal 

response (d = 5) by decomposition into 2 adjacent intervals.  

3.1 Rational Multiplication and Division 
In the general case, constant factors are rational 

numbers, represented as n / d, being n and d two 

integers. Since integer arithmetic is not required in the 

calculations, the previous discussion is also valid for 

rational dividers d' = d / n. Consequently, the propo-
sed algorithm computes rational multiplications or 

divisions without changes. Some applications of the 

proposed algorithm for fractions of the form n / d are: 

1) To obtain a numerator near a power of two: In 
this approach the computed fraction takes the form  

2k / A·d. One division is still required, but this 

operation can be easier to perform. In this case, the 

SNR also tends to infinity as the algorithm evolves, 

and it can be made as large as required.  

2) To compute several fractions using the same 

divider: Fractions take the general form N
 
/ D, but 

they share specialized dividers. This method requires 

one additional multiplication per fraction, but the 

overall complexity is reduced. 

 

3.2 Range Decomposition 

Another interesting optimization technique consists in 

splitting the input range into several adjacent intervals 

and computing approximating functions for each part. 

This operation is shown in the following example. 

    Let x lay in the range [0,127], d be equal to 5, and 

let y be implemented using zero fractional bits. 

Figure 6 shows the differences between two approxi-

mating functions and the ideal one, and the maximum 

limits permitted for the variations. The first function, 

f1(x) = 3x/16, provides the exact results in the range 

[0, L1], and the second one, f2(x) = 3x/16 + 0.75, in 

the range [L2,128]. Consequently, f1(x) is used when 

0 ≤ x ≤ 63, and f2(x) is used otherwise. Since the only 

difference between the two functions is the constant 

value 0.75, this approach obtains the required results 

with very little increase of the hardware resources. 

 

3.3 Selection of the Multiplicative Constant 
The last part of this section provides some guidelines 

to select the multiplicative constant A. Obviously, the 

best performance of the algorithm is achieved when the 

selection of A compensates the underflow effects of 

the multipliers. Consequently,  

a) if truncation is selected as the underflow strategy (in 

the partial products or in the final sum), the computed 

results are below the ideal ones, so the upper-nearest 

criterion is preferred. 

b) if rounding is selected as the underflow strategy, 

the computed results can be above or below the ideal 

ones, so the nearest criterion is preferred. 

c) if ceiling is selected as the underflow strategy, the 

computed results are above the ideal ones, so the 

lower-nearest criterion is preferred. 

3.3.1    A Particular Approach 
Among the presented alternatives, one combination 
is of particular interest: implementation of integer 
dividers with truncation of the partial products and 
the final result, and selection of the upper-nearest 
criterion to compute the multiplicative constant of 
the algorithm. In this case, the algorithm transforms 
the constant coefficient division into a constant multi-
plication, truncation reduces the number of adders 
required, and the upper-nearest criterion compensates 
the variations introduced in the approximation 
process.  
    Consequently, this particular approach provides 
significant improvements in area and speed, it does 
not alter the quantized results, and it can still be 
optimized using existing techniques for low-power, 
increased speed, etc. The application of this approach 
obtains savings of approximately 60% in area with 
respect to the others criterions, while accuracy is 
preserved within the same limits. Section 4 provides 
further comparative results of this approach. 
Definition: The range of exactitude, R, of a given 
operator is defined as the range where the quantized 
results are identical to the mathematical ones. 
Theorem 5: In constant coefficient dividers without 
truncation or rounding in the partial products, the 
range of exactitude is given by 

0 1
2
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− 
k
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R
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A direct consequence of theorems 2 and 5 is that the 
range of exactitude of constant coefficient dividers 
can always be increased to meet the specifications. 
 
 

4   Comparative Results 
This section provides comparative results for the most 
representative cases among the alternatives explained 
in the previous sections: (i) exact computation of 
integer division using constant multipliers, (ii) appro-

L2 L1 
   ideal - Q0F 

maximum limits 

   ideal – f2(x) 

ideal – f1(x) 



ximation of integer division under noise constraints, 
and (iii) approximation of integer division under noise 

constraints using multipliers with truncated partial 
products (also called left-sided multipliers [20]). 
 

4.1 Computation of the Exact Division 

Table 1 shows the computed fractions for three 
constant dividers (3, 5 and 23, respectively) when 
dividend x is a 10-bit positive integer. Constants A 

and k are obtained by selecting the upper-nearest 

criterion in the proposed algorithm. The hardware 
resources are provided in terms of the number of 
slices required by a Xilinx XC2V40 FPGA device to 
implement the constant multiplier, and redundant 
additions have been optimized to reduce the global 

area of the operator. 
 

4.2 Division under Noise Constraints 

The next example compares several implementations 
of one of the dividers (d = 5) under certain noise 
constraints given (SNR > 90 dB). Dividend x is equal 
to the previous case. Table 2 provides the pairs A - k, 

the range of exactitude, and the hardware required to 
perform the constant division (M.E. and M.S.E. stand 
for Maximum Error and Mean Squared Error, respec-
tively). Note that the exact divider is also included in 
this case, since it fits the noise requirements. The 

specifications are not met for values of k smaller than 
8. Among the three different choices, these results 
clearly state that the third case (A = 51, k = 8) is the 
one that requires minimum hardware. 
 

4.3. Division under Noise Constraints Using 
Left-Sided Multipliers 

In this case, the input range and the target SNR are 
the same than in the previous example, but truncation 
of partial products is also included. Left-sided 
multipliers introduce extra noise in the computation 

of the division, resulting in further degradations on 
the final results. The goal is to truncate the maximum 
number of bits, t, and still meeting the specifications. 

    The steps followed in the computation of the best 
implementation using left-sided multipliers are:  
1. Compute the values of A and k that obtain exact 
results (A = 205, k = 10).  
2. Compute the left-sided multiplication for partial 
products truncated to 10 bits (t = 10).  
3. If the obtained SNR does not meet the speci-
fications but increases its value, increase the value of 
constant A. If the SNR decreases its value, repeat the 
whole process decreasing t.  
    The effect of increasing the value of constant A is 
shown in figure 7. Using A = 205, k = 10 and a left-
sided multiplier with t = 10, the curves that charac-
terize the operator are always below the exact one. If 
constant A is increased up to 208, the new curve is 
situated under the exact one for small input values 
(figure 7.b), and above it for large ones (figure 7.c). 
Thus, after increasing A, the maximum error, the 
mean square error and the SNR improve, as shown 
on table 3. 
    Table 4 displays the results for t = 8, 9 and 10 bits. It 
can be observed that all the results achieve low-area 
and low-power implementations, and that the first 
one (t = 10) provides the best selection in terms of 
hardware requirements.  
    Since hardware implementation is highly depen-
dent on the constant selected in the process, a rule of 
thumb in this case is to compute several constants 
that meet the specifications, as in section 4.2, and to 
select the one with the minimum hardware require-
ments.  
    Finally, the examples developed throughout this 
section confirm that the algorithm presented is a 
powerful tool that helps the designer in the selection 
of parameters that compute constant coefficient 
dividers under noise constraints. Another important 
remark is that the use of nonlinear operators, such as 
left-sided multipliers, can lead to significant savings 
in hardware. 

TABLE 1. IMPLEMENTATION OF EXACT DIVIDERS 

d A k R Area(sl.) 

3 683 11 0-2047 17 

5 205 10 0-1023 17 

23 713 14 0-1091 21 

 
TABLE 2. CONSTANT DIVIDERS WITH CONSTRAINED  

NOISE  (d = 5, R = 0-1023, SNR > 90 dB) 

A k SNR(dB) M.E. M.S.E. Area(sl.) 

205 10 Infinity 0 0 17 

103 9 102.3128 1 0.5 14 

51 8 102.3519 1 0.4980 13 

 
 

TABLE 3. EFFECT OF INCREASING CONSTANT A IN  

LEFT-SIDED MULTIPLIERS (d = 5, b = 10 BITS). 

A k T SNR(dB) M.E. M.S.E. Area(sl.) 

205 10 10 80.6984 4 4.3118 9 

208 10 10 90.4305 3 1.6406 7 

 
TABLE 4. IMPLEMENTATION RESULTS OF CONSTANT 

DIVIDERS USING LEFT-SIDED MULTIPLIERS (d = 5) 

A k t SNR(dB) M.E. M.S.E. Area(sl.) 

208 10 10 90.4305 4 1.6406 7 

204 10 9 90.2887 3 1.6641 10 

205 10 9 94.3082 2 1.1133 10 

206 10 9 101.1003 2 0.5645 10 

206 10 8 106.4655 1 0.3301 10 

 
 



5   Conclusions 
This paper has analyzed the quantization effects in 

the implementation of constant coefficient dividers. 

Properties, theorems and alternative approaches have 

been derived to obtain the most suitable implementa-

tion under a given set of constraints. These constraints 

can be described directly (accuracy of the result, SNR, 

etc.) or indirectly (area, speed, latency, etc.). 

    The computation process has been formalized in 

an algorithm that computes the best fraction in a 

selectable way. Among the alternatives proposed to 

improve the implementation efficiency of the divider, 

special emphasis has been made in a specific approach 

that provides efficient, low-cost, dividers and 

preserves the efficiency of the operator due to the 

cancellation of the variations. Examples have shown 

that application of the proposed approach provides 

up to 60% savings in area, with increased the speed 

of the divider. 
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Figure 7. Integer division using the left-sided multipliers and truncation (d = 5, R = 0-1023). (a) full input range,  

(b) amplification for small input values, (c) amplification for large input values. Each plot contains:  

(i) exact results (solid line); (ii) curve for A = 205, k = 10 (+); (iii) curve for A = 208, k = 10 (×). 


