
Efficient Implementation of Constant Coefficient Division

Under Quantization Constraints

JUAN A. LOPEZ, GABRIEL CAFFARENA, RUZICA JEVTIC, CARLOS CARRERAS, OCTAVIO NIETO-TALADRIZ

Electronics Engineering Department

Technical University of Madrid

E.T.S.I. Telecomunicación, Ciudad Universitaria, s/n, 28036, Madrid

SPAIN

 http://www.die.upm.es/personal/JA-lopez.html.en

Abstract: Division is one of the basic operations of arithmetic algorithms, but the cost associated to its hardware

implementation exceeds the reasonable limits for most dedicated architectures. This paper provides a systematic

algorithm that (a) transforms the constant coefficient division into a constant coefficient multiplication,

selectable under some given constraints, and (b) optimizes the resulting multiplier by analyzing the quantization

noise inherent to the finite wordlength implementation process. Consequently, this algorithm achieves reduced-area,

high-speed constant coefficient dividers that maintain the accuracy in the range of represented numbers. The

theorems and presented results confirm that the proposed algorithm computes the most suitable fraction under a

given set of noise constraints.

Key-Words: Computer Arithmetic, Division Algorithms, Constant Division, Constant Multiplication, Dedicated

Hardware, Embedded Systems, Implementation, Optimization, CAD Tools.

1 Introduction
Although extensive literature exists describing the

theory of division [1]-[5], the implementation of this

operation in dedicated hardware is too expensive for

many applications. Generic division algorithms are

divided into the following classes [6]: digit recu-

rrence [7],[8], functional iteration [9],[10], very high

radix [11],[12], table look-up [13] and variable

latency. Many practical architectures also combine

several of these classes to achieve high speed and low

latency, and to surpass given accuracy constraints [6].

Consequently, resulting architectures are exceedingly

complex, and they must be simplified before its hard-

ware implementation.

 Conversely, constant coefficient dividers [14]-[19]

significantly reduce the implementation requirements

of the operator, and their application is more suited to

embedded applications. Their properties have been

deeply analyzed to generate efficient binary to digital

converters [15], but the obtained results are focused

on coefficients whose values are factorized in terms

2k and 2k ± 1, so they are not valid in the general

case. Due to this fact, the most common types of

implementation procedures perform constant multi-

plications of the quantized reciprocal values [16]-[19].

These procedures improve the performance of the

divider (in terms of area, speed, latency, etc.), but they

also introduce certain amount of quantization noise.

 This paper analyses the quantization variations

inherent to the finite wordlength implementation of

constant coefficient dividers, and proposes some alter-

natives to provide more efficient implementations.

Savings in resources directly improve area and speed,

but the proposed procedure allows to minimize any

other metric, such as power consumption. The

theorems and results given prove that the optimal

coefficients achieve significant reductions in area,

while preserving the quantization noise below the

specified constraint.

 The structure of the paper is as follows: Section 2

presents the basic algorithm and some theorems to

formalize the selectable accuracy of the divider.

Section 3 explains several alternatives to improve the

application of the basic algorithm. Section 4 presents

the comparative results for a representative set of

constant dividers. Finally, section 5 summarizes the

conclusions of this work.

2 Proposed Algorithm
Even though algorithms for generic division have

evolved remarkably fast in the past decades, there

has been little evolution in algorithms to perform

constant dividers [14]-[19]. The formal steps tradi-

tionally followed to perform this operation are:

1. Obtain the rational representation, q, of the

reciprocal of divisor d.

2. Truncate q to the number of bits selected to

perform the operation, initially 1.

3. Compute the output difference or noise power

for the range of the input signal.

4. If the specifications are not met, increase the

number of bits and return to step 2.

Fig. 1. Ideal and quantized responses of the divider (d = 10).

Last two fractions computed by the algorithm when the

output is truncated to zero fractional bits.

Fig. 2. Differences between the ideal response and the

computed ones. Maximum limits allowed for the variations

when the output is truncated to zero fractional bits.

This method is intuitive and it rapidly returns a valid
constant coefficient, but the final value is restricted
to a quantized rational representation of 1/d. As it will
be shown, there are many other constants that meet
the specifications (constant q is only one of this set),
and the proposed algorithm supports the selection of
other constants in order to improve the efficiency of
the final divider.
 The basic algorithm proposed here to generate
efficient implementations of constant coefficient

dividers has the following iterative scheme:
1. Select a power of two, 2

k
, initially 2

0
.

2. Find the nearest multiple of divisor d to the
power of two, 2k, called A here.

3. Multiply numerator and denominator of 1/d by A

to obtain the equivalent fraction A / D.
4. Substitute the denominator of the equivalent

fraction, D, by 2k. Consequently, the computed
fraction, A / 2k, only requires one constant coef-
ficient multiplication and one k-bit shift.

5. Calculate the maximum difference, or any other
selected criteria, between the ideal and the quan-
tized outputs in the valid range of the dividend.

6. If the specifications are not met, increase k and

return to step 2.
The main features of this algorithm are: (i) the
divider is automatically normalized (i.e. the algorithm
detects the leading ‘1’ and operates the following k-1
bits of q), thus it automatically computes the result

with maximum precision; (ii) the parameters of this
procedure, specially the end conditions, are easily
specified; and (iii) in each iteration, the multiplying
constant A is selected according to the target criteria:
minimum implementation complexity, maximum

Signal-to-Noise Ratio (SNR), maximum range with
outputs identical to the ideal divider, etc.
 The following example compares the behavior of
the two procedures. Let divisor d be equal to 10,
dividend x be an 8-bit signed integer value, and let

the result y be represented using 8 fractional bits.
Assume that two's-complement and truncation are
the representation and quantization strategies.
 The value of q that performs the required division
is 0.0001100110011…b. Using the 4-step algorithm,
q is truncated and represented as 0.00011001b, so
dividend x is multiplied by 0.09765625, instead of
0.1 as it should. This difference can be significant
depending on the specific value of x and the required
precision of the result. In this example, the maximum

difference is ±0.3. The application of the proposed

algorithm, assuming identical hardware resources,
returns A = 13 and 2k = 128. In this case, x is
multiplied by 0.1015625, and the maximum error is

reduced to ±0.2. The increased performance of this
result clearly indicates the beneficial application of

the proposed algorithm.

 Figure 1 shows the ideal response and the last two

fractions of the algorithm for d = 10. In this case, y is

quantized to zero fractional bits, Q0F (for the sake of

clarity), instead of the 8 fractional bits as in the

example. The iterative search finishes when the

difference between the two quantized results is zero

in the whole range of values of the dividend. The

quantized response is also given. Figure 2 shows the

differences between the computed responses and the

ideal one, and it also indicates the maximum

variations allowed in this case.

2.1 Mathematical Analysis
The underlying principle of the presented algorithm is

the following: The result of the divider is correct as

long as the ideal and the computed quantized quotients
provide the same values. Moreover, further improve-

ments or modifications are allowed iff this condition

remains satisfied. These improvements can be carried

out as a result of the theorems presented below.

 ideal resp. (1/10)

 quantized resp. (Q0F)

 1/16

 3/32

 ideal - 1/16

 ideal - 3/32

 ideal - Q0F

maximum limits

Theorem 1: The SNR introduced by the computed

fraction is independent of the range of the input

signal.

Theorem 2: As the algorithm evolves, the SNR of the

computed fractions tends to infinity.

Corollary: The SNR can be made as large as required

by increasing the number of bits of the computed

fraction.

Theorem 3: When it searches for the nearest fraction

below the ideal response (lower-nearest criterion), the

maximum and minimum deviations of the iteration-k

computed fraction are bounded by

2 2

·

2 2
≤ ≤lowerk k

A A d
e (1)

This theorem assumes k >> log2 d, which is the general

case after some iterations of the algorithm.

Theorem 4: When it searches for the nearest fraction

(nearest criterion) and the nearest fraction above the

ideal response (upper-nearest criterion), the maximum

and minimum deviations of the iteration-k computed

fraction are respectively bounded by

2 2 1

·

2 2 +
± ≤ ≤ ±nearestk k

A A d
e (2)

2 2

·

2 2
≤ ≤upperk k

A A d
e (3)

This theorem also assumes k >> log2 d.

 The mathematical proofs of these theorems have

been extracted from this section to emphasize the

operation and conclusions of the proposed algorithm.
However, the examples provided throughout this

paper confirm the validity of this analysis.

 Figures 3-5 show the first four iterations of the

algorithm for divisor d = 5 in the three cases. Each
plot provides the ideal response of the divider

(diagonal line in each plot), the computed fraction

(circles), and the maximum and minimum error

bounds (closer and more separated lines from the
ideal response, respectively) allowed for the computed

fraction in each case.
Final remark: For simplicity, the theorems presented

in this section assume integer arithmetic. However,

the conclusions given here are also valid in rational

dividers by applying the required normalization.

3 Alternative Approaches
This section describes some interesting variations of

the basic procedure described in the previous section:

(i) constant multiplication and division by rational
values; (ii) use of range decomposition; and (iii) selec-

tion of the multiplicative constant A, according to the

underflow strategy, to enhance the results of the

proposed algorithm.

Fig. 3. First four iterations of the algorithm (d = 5) when it searches the best fraction below the ideal response.

Fig. 5. First four iterations of the algorithm (d = 5) when it searches the best fraction above the ideal response.

Fig. 4. First four iterations of the algorithm (d = 5) when it searches the best fraction nearest to the ideal response.

Fig. 6. Computation of the best fraction nearest to the ideal

response (d = 5) by decomposition into 2 adjacent intervals.

3.1 Rational Multiplication and Division
In the general case, constant factors are rational

numbers, represented as n / d, being n and d two

integers. Since integer arithmetic is not required in the

calculations, the previous discussion is also valid for

rational dividers d' = d / n. Consequently, the propo-
sed algorithm computes rational multiplications or

divisions without changes. Some applications of the

proposed algorithm for fractions of the form n / d are:

1) To obtain a numerator near a power of two: In
this approach the computed fraction takes the form

2k / A·d. One division is still required, but this

operation can be easier to perform. In this case, the

SNR also tends to infinity as the algorithm evolves,

and it can be made as large as required.

2) To compute several fractions using the same

divider: Fractions take the general form N

/ D, but

they share specialized dividers. This method requires

one additional multiplication per fraction, but the

overall complexity is reduced.

3.2 Range Decomposition

Another interesting optimization technique consists in

splitting the input range into several adjacent intervals

and computing approximating functions for each part.

This operation is shown in the following example.

 Let x lay in the range [0,127], d be equal to 5, and

let y be implemented using zero fractional bits.

Figure 6 shows the differences between two approxi-

mating functions and the ideal one, and the maximum

limits permitted for the variations. The first function,

f1(x) = 3x/16, provides the exact results in the range

[0, L1], and the second one, f2(x) = 3x/16 + 0.75, in

the range [L2,128]. Consequently, f1(x) is used when

0 ≤ x ≤ 63, and f2(x) is used otherwise. Since the only

difference between the two functions is the constant

value 0.75, this approach obtains the required results

with very little increase of the hardware resources.

3.3 Selection of the Multiplicative Constant
The last part of this section provides some guidelines

to select the multiplicative constant A. Obviously, the

best performance of the algorithm is achieved when the

selection of A compensates the underflow effects of

the multipliers. Consequently,

a) if truncation is selected as the underflow strategy (in

the partial products or in the final sum), the computed

results are below the ideal ones, so the upper-nearest

criterion is preferred.

b) if rounding is selected as the underflow strategy,

the computed results can be above or below the ideal

ones, so the nearest criterion is preferred.

c) if ceiling is selected as the underflow strategy, the

computed results are above the ideal ones, so the

lower-nearest criterion is preferred.

3.3.1 A Particular Approach
Among the presented alternatives, one combination
is of particular interest: implementation of integer
dividers with truncation of the partial products and
the final result, and selection of the upper-nearest
criterion to compute the multiplicative constant of
the algorithm. In this case, the algorithm transforms
the constant coefficient division into a constant multi-
plication, truncation reduces the number of adders
required, and the upper-nearest criterion compensates
the variations introduced in the approximation
process.
 Consequently, this particular approach provides
significant improvements in area and speed, it does
not alter the quantized results, and it can still be
optimized using existing techniques for low-power,
increased speed, etc. The application of this approach
obtains savings of approximately 60% in area with
respect to the others criterions, while accuracy is
preserved within the same limits. Section 4 provides
further comparative results of this approach.
Definition: The range of exactitude, R, of a given
operator is defined as the range where the quantized
results are identical to the mathematical ones.
Theorem 5: In constant coefficient dividers without
truncation or rounding in the partial products, the
range of exactitude is given by

0 1
2

≤ < −

−
k

Ad
R

Ad

A direct consequence of theorems 2 and 5 is that the
range of exactitude of constant coefficient dividers
can always be increased to meet the specifications.

4 Comparative Results
This section provides comparative results for the most
representative cases among the alternatives explained
in the previous sections: (i) exact computation of
integer division using constant multipliers, (ii) appro-

L2 L1
 ideal - Q0F

maximum limits

 ideal – f2(x)

ideal – f1(x)

ximation of integer division under noise constraints,
and (iii) approximation of integer division under noise

constraints using multipliers with truncated partial
products (also called left-sided multipliers [20]).

4.1 Computation of the Exact Division

Table 1 shows the computed fractions for three
constant dividers (3, 5 and 23, respectively) when
dividend x is a 10-bit positive integer. Constants A

and k are obtained by selecting the upper-nearest

criterion in the proposed algorithm. The hardware
resources are provided in terms of the number of
slices required by a Xilinx XC2V40 FPGA device to
implement the constant multiplier, and redundant
additions have been optimized to reduce the global

area of the operator.

4.2 Division under Noise Constraints

The next example compares several implementations
of one of the dividers (d = 5) under certain noise
constraints given (SNR > 90 dB). Dividend x is equal
to the previous case. Table 2 provides the pairs A - k,

the range of exactitude, and the hardware required to
perform the constant division (M.E. and M.S.E. stand
for Maximum Error and Mean Squared Error, respec-
tively). Note that the exact divider is also included in
this case, since it fits the noise requirements. The

specifications are not met for values of k smaller than
8. Among the three different choices, these results
clearly state that the third case (A = 51, k = 8) is the
one that requires minimum hardware.

4.3. Division under Noise Constraints Using
Left-Sided Multipliers

In this case, the input range and the target SNR are
the same than in the previous example, but truncation
of partial products is also included. Left-sided
multipliers introduce extra noise in the computation

of the division, resulting in further degradations on
the final results. The goal is to truncate the maximum
number of bits, t, and still meeting the specifications.

 The steps followed in the computation of the best
implementation using left-sided multipliers are:
1. Compute the values of A and k that obtain exact
results (A = 205, k = 10).
2. Compute the left-sided multiplication for partial
products truncated to 10 bits (t = 10).
3. If the obtained SNR does not meet the speci-
fications but increases its value, increase the value of
constant A. If the SNR decreases its value, repeat the
whole process decreasing t.
 The effect of increasing the value of constant A is
shown in figure 7. Using A = 205, k = 10 and a left-
sided multiplier with t = 10, the curves that charac-
terize the operator are always below the exact one. If
constant A is increased up to 208, the new curve is
situated under the exact one for small input values
(figure 7.b), and above it for large ones (figure 7.c).
Thus, after increasing A, the maximum error, the
mean square error and the SNR improve, as shown
on table 3.
 Table 4 displays the results for t = 8, 9 and 10 bits. It
can be observed that all the results achieve low-area
and low-power implementations, and that the first
one (t = 10) provides the best selection in terms of
hardware requirements.
 Since hardware implementation is highly depen-
dent on the constant selected in the process, a rule of
thumb in this case is to compute several constants
that meet the specifications, as in section 4.2, and to
select the one with the minimum hardware require-
ments.
 Finally, the examples developed throughout this
section confirm that the algorithm presented is a
powerful tool that helps the designer in the selection
of parameters that compute constant coefficient
dividers under noise constraints. Another important
remark is that the use of nonlinear operators, such as
left-sided multipliers, can lead to significant savings
in hardware.

TABLE 1. IMPLEMENTATION OF EXACT DIVIDERS

d A k R Area(sl.)

3 683 11 0-2047 17

5 205 10 0-1023 17

23 713 14 0-1091 21

TABLE 2. CONSTANT DIVIDERS WITH CONSTRAINED

NOISE (d = 5, R = 0-1023, SNR > 90 dB)

A k SNR(dB) M.E. M.S.E. Area(sl.)

205 10 Infinity 0 0 17

103 9 102.3128 1 0.5 14

51 8 102.3519 1 0.4980 13

TABLE 3. EFFECT OF INCREASING CONSTANT A IN

LEFT-SIDED MULTIPLIERS (d = 5, b = 10 BITS).

A k T SNR(dB) M.E. M.S.E. Area(sl.)

205 10 10 80.6984 4 4.3118 9

208 10 10 90.4305 3 1.6406 7

TABLE 4. IMPLEMENTATION RESULTS OF CONSTANT

DIVIDERS USING LEFT-SIDED MULTIPLIERS (d = 5)

A k t SNR(dB) M.E. M.S.E. Area(sl.)

208 10 10 90.4305 4 1.6406 7

204 10 9 90.2887 3 1.6641 10

205 10 9 94.3082 2 1.1133 10

206 10 9 101.1003 2 0.5645 10

206 10 8 106.4655 1 0.3301 10

5 Conclusions
This paper has analyzed the quantization effects in

the implementation of constant coefficient dividers.

Properties, theorems and alternative approaches have

been derived to obtain the most suitable implementa-

tion under a given set of constraints. These constraints

can be described directly (accuracy of the result, SNR,

etc.) or indirectly (area, speed, latency, etc.).

 The computation process has been formalized in

an algorithm that computes the best fraction in a

selectable way. Among the alternatives proposed to

improve the implementation efficiency of the divider,

special emphasis has been made in a specific approach

that provides efficient, low-cost, dividers and

preserves the efficiency of the operator due to the

cancellation of the variations. Examples have shown

that application of the proposed approach provides

up to 60% savings in area, with increased the speed

of the divider.

Acknowledgement: This work has been partially

supported by the spanish “CICYT - Subdirección

General de Proyectos de Investigación” under project

number TIC2003-09061-C03-02.

References:

[1] E.E. Swartzlander, Jr: Computer Arithmetic, vol. 1,

Los Alamitos, CA: IEEE Computer Society Pr., 1990.

[2] M.C. Ercegovac, T. Lang: Division and Square

Root: Digit Recurrence Algorithms and Implemen-

tations. Kluwer Acad. Publ., 1994.

[3] J.M. Muller. Elementary Functions. Algorithms

and Implementation. Birkhauser, 1997.

[4] B. Parhami: Computer Arithmetic: Algorithms

and Hardware Designs, New York: Oxford

University Press, 2000.

[5] M.J. Flynn, S.F. Oberman: Advanced Computer

Arithmetic Design, J. Wiley & Sons, New York, 2001.

[6] S.F. Oberman, M.J. Flynn: "Division Algorithms

and Implementations". IEEE Trans. Computers, vol.

46 (8), pp. 833 -854, Aug 1997.

[7] J.B. Wilson, R.S. Ledley: "An Algorithm for

Rapid Binary Division", IRE Trans. Electr. Comput.

Vol. EC-10, pp. 662-670, 1961.

[8] D.E. Atkins: "Higher-Radix Division Usign Esti-

mates of the Divisor and Partial Remainders". IEEE

Trans. Computers, vol c-17, 10, pp. 925-934, Oct, 1968.

[9] D. Ferrari: "A Division Method Using a Parallel

Multiplier", IEEE Trans. Electr. Comput. Vol. EC-16,

pp. 224-226, 1967.

[10] M.J. Flynn: "On Division by Functional Iteration".

IEEE Trans. Computers, vol. c-19, pp. 702-706. 1970.

[11] D. Wong, M. Flynn: "Fast Division usign accurate

quotient approximations to reduce the number of

iterations". 10
th
 IEEE Symp. Computer Arithmetic,

pp. 191-201, June, 2001.

[12] W. Briggs, D. Matula: "Method and apparatus for

performing division using a rectangular aspect ratio

multiplier". U.S. Patent Nº 5,046,038, Sept, 1991.

[13] M. Ito, N. Takagi, S. Yajima: "Efficient Initial

Approximation and Fast Converging Methods for

Division and Square Root". Proc. 12
th
 Symp. Computer

Arithmetic (ARITH12) pp. 2-9. 1995.

[14] P. Srinivasan: "Generalized approaches to constant

division". PhD Dissertation, Tulane University, 1968.

[15] P. Srinivasan, F.E. Petry: "Constant-division

algorithms" IEE Proc. Computers and Digital

Techniques, vol. 141, pp. 334 - 340, Nov. 1994.

[16] E. Artzy, J.A. Hinds, H.J. Saal: "A Fast Division

Technique for Constant Divisors". Communications

of the ACM, 19 (2), pp. 98-101, February, 1976.

[17] S.-Y.R. Li: "Fast Constant Division Routines".

IEEE Trans. Computers, C-34, pp. 866-869, Sept, 1985.

[18] R.Alverson et. al.: "The Tera Computer System".

Int. Conf. on Supercomputing, pp. 1-6, June, 1990.

[19] R. Alverson: "Integer division using reciprocals",

Proceedings 10th IEEE Symposium on Computer

Arithmetic, pp. 186 -190, 1991.

[20] Trân-Thông: “A New Sum of Products Imple-

mentation for Digital Signal Processing”. IEEE Trans.

Circuits and Systems. Vol CAS-25, nº1, pp. 27-31.

Jan, 1978.

Figure 7. Integer division using the left-sided multipliers and truncation (d = 5, R = 0-1023). (a) full input range,

(b) amplification for small input values, (c) amplification for large input values. Each plot contains:

(i) exact results (solid line); (ii) curve for A = 205, k = 10 (+); (iii) curve for A = 208, k = 10 (×).

