
The Business Value Propositions of Service-Oriented Architectures

ZELJKO PANIAN
The Graduate School for Economics and Business

University of Zagreb

J.F. Kennedy Sq. 6
CROATIA

http://www.informatika.efzg.hr

Abstract: - Service-Oriented Architecture (SOA) concept provides the software industry with a powerful
business value extension not available with hardware solutions – a model that supports flexible and dynamic
assembly of business solutions at runtime from a variety of locations. In addition to addressing technical
complexities, business drivers for an SOA framework model include the capability to significantly improve
the time-to-market delivery of the business solution and require less technical resources to deliver it. A
primary goal of implementing Service-Oriented Architecture is to simplify development and implementation
of new applications and capabilities through aggregating many low-level tasks into higher-level services. A
secondary goal of SOA is to enable any application or process to utilize the services of any other application
or process, over any means of interconnection. The universality of SOA can help enterprises use their existing
systems in new ways, for new purposes, for greater competitive advantage, efficiency, and return on
investment.

Key-Words: - Service, Enterprise Service Bus, Web Services, Service-Oriented Architecture, business
process, business value proposition, implementation methodology, Business Process Execution Language
(BPEL)

1 Introduction
A key business goal is to grow revenues while
concurrently lowering operating costs. Since the
early 1980s, the personal computer industry has
fueled significant productivity growth and reduced
operating costs for businesses mainly due to their
engineering model of assembling a wide variety of
systems from commercial off-the-shelf (COTS)
pre-built components.

In this same time period, the software industry
continued to evolve engineering models in an
attempt to mimic the successful hardware industry
approach. Service-Oriented Architecture (SOA)
represents the latest and closest step in this
evolutionary process.

With self-contained, modular, loosely coupled,
location, platform and protocol independent
attributes of a service-oriented approach, software
solutions can obtain the key capability of the
successful hardware engineering model –
commercial off-the-shelf solution assembly.

In addition to realizing the COTS vision,
Service-Oriented Architecture concept provides the
software industry with a powerful business value
extension not available with hardware solutions – a
model that supports flexible and dynamic assembly

of business solutions at runtime from a variety of
locations.

To realize the vision of dynamic and flexible
assembly of commercial off-the-shelf business
solutions, the technical complexities of
constructing, assembling, and controlling solutions
have to be addressed. As will be described later in
this paper, these complexities are key technical
drivers for an SOA framework model.

In addition to addressing these technical
complexities, business drivers for an SOA
framework model include the capability to
significantly improve the time-to-market delivery
of the business solution and require less technical
resources to deliver it.

2 Service-Oriented Architecture

Basics
OASIS, a non-profit global consortium defines
SOA as “an architectural style whose goal is to
achieve loose coupling among interacting software
agents or services” [1].

According to the same source, service is “a unit
of work performed by a service provider to achieve
desired end results for a service consumer”. Both

provider and consumer are roles layered by
software agents on behalf of their owners.

Unfortunately, these definitions are often
diluted due to the marketing efforts of many
software companies who attempt to define SOA
through any one number of technologies, such as
Enterprise Service Bus (ESB) [2, 3], Business
Process Execution Language (BPEL) [4], or Web
Services [5, 6].

The fact is that most of these technologies
indeed contribute to an SOA, but an SOA is far
more extensive and general than any one of these
standards.

To further break down the definition, it is
important to understand that services come in
different types; coarse-grained and fine-grained.
The granularity is based on how much of a service
is exposed.

Coarse-grained services are constructed from
lower-level services, components, and objects that
are intelligently structured to meet specific business
needs. Fine-grained services provide a small
amount of business process usefulness, such as
basic data access or simple data conversion.

SOA is a model based upon the loose coupling
of services of optimal granularity to support the
desired business processes [7]. In fact, taking a look
back at the evolution of software development up to
SOA, it is easy to see the challenges developers
have faced over the past several years and to
observe the solutions that have been proposed to
solve the problem of distributing and sharing the
logic leading up to SOA.

The principles of structured and modular
design, followed by object-oriented programming,
have addressed the challenge of effectively
distributing and re-using code to better facilitate the
development of custom business applications. SOA
extends these concepts out to the service level to
make such services available to those outside of IT.

3 Goals of Deploying Service-

Oriented Architectures
A primary goal of implementing Service-Oriented
Architecture is to simplify development and
implementation of new applications and capabilities
through aggregating many low-level tasks into
higher-level services. To use human analogy, the
heart is a discrete system comprised of smaller,
specialized systems, such as valves, arteries, and
veins. Lungs, the circulatory system, and brain are
other vital human macrosystems. Ultimately, the
body’s major macrosystems – respiratory system,

circulatory system, nervous system – collaborate to
support global processes such as respiration,
speech, and movement.

Within each level of aggregation, the
microsystems function independently; however,
each successively higher level sees the lower-level
functions as ubiquitous and available to it through a
common interface. The heart does not worry about
what the lungs do or how they do it; when the heart
needs oxygen, it simply extracts it from an artery
without knowing how it is supplied.

An SOA is similar. All electronic business
processes are implemented at the lowest levels as
specialized functions designed to perform specific
individual tasks. Low-level services are designed
like text messaging – as short, to-the-point
interactions. These low level services created and
maintained by people who have expertise required
to weave them together to produce desired business
effect.

A service does not necessarily know about
other services or how they perform. For example,
when a financial reporting application needs data, it
simply asks for it from a software service without
knowing or caring from where or how the data is
supplied. And at higher level of aggregation,
neither does a Web application, portal, or
application system worry about what other
applications do.

A secondary goal of SOAs is to enable any
application or process to utilize the services of any
other application or process, over any means of
interconnection. Enterprise business processes rely
on wide variety of message formats and transports
to communicate within and between systems.

A unique message format, combined with the
communication transport over which it travels, is
called a service channel. Service channels define
unique language and communication characteristics
needed to enable disparate systems to collaborate.
In SOA, any service should be usable over any type
of service channel, rather then being confined by
unique or proprietary combinations of message
format and channel. SOA can aggregate a business
enterprise’s service-channel architecture into a
single, extensible service-channel implementation,
enabling any service to operate across any channel
without having to implement multiple gateways or
trading partner agreement managers.

The universality of SOA can help enterprises
use their existing systems in new ways, for new
purposes, for greater competitive advantage,
efficiency, and return on investment.

The SOA system is schematically presented on
Fig. 1.

 Fig. 1 – The SOA System

4 The Importance of Service-

Oriented Architecture
With a focus on revenue growth combined with
lower operating costs, enterprises are continually
challenged by the need to upgrade and create
custom applications across the enterprise to
accommodate even new and more demanding
business requirements.

The urgency to upgrade applications to reusable
services, both internally and externally, is fueled by
the demand to provide integrated access to
information for anyone, from anywhere and
anytime.

For example, consider the Company X that has
a new set of upgrade requests from the business for
their customer support applications. These new
requirements mandate that outside sales, the call
center and online customers gain access to the same
set of corporate information. Outside sales will
require remote access to purchase history, support,
inventory, and payment details. Customer service
requires access to the same data for taking customer
inquires, but requires a “rich client” interface. The
new requirements also include a Web-based self-
service application where online customers can
check order status, track shipments, and view
payment verification.

This example depicts a typical enterprise in
need for Service-Oriented Architecture. Enterprises
are quickly adopting strategies to leverage real-time
services both internally and externally in an effort
to increase their bottom line. A SOA platform
enables IT to respond promptly, meet the changing
needs of the business, and extend applications by
adjusting the model without re-writing the existing
code.

We can extend the example above with
Company X to include a requirement for additional
access to extended business data at Company Y.
Company Y is a multi-channel supplier to
Company X. The new requirements mandate
support for Company X’s customers and employees
to access order and shipping details purchased
online from Company X’s Web site, but supplied
by Company Y.

Requirements for extending custom
applications beyond the enterprise are more
common in today’s business enterprise. An SOA
platform can satisfy this requirement without use of
any additional technology. Business users connect
to the SOA platform to select which partners they
will interact with, and how they will interact. The
platform automates inter-business communication
to the full extent by placing it in hands of the
business users.

5 Service-Oriented Architecture
Implementation Methodology

Moving to Service-Oriented Architecture requires a
strategic commitment to create a more flexible IT
system that maps closely with business processes,
instead of trying to retrofit business requirements
into technology decisions. Once the commitment is
made, the path to SOA can either be very difficult
or extremely straightforward based on technologies
and practices.
The first version of any new implementation is
always the most critical, difficult and expensive
step until optimal operation is achieved. The
challenges of training, evolving best practices,
collaboration, and performance and tuning are
expected. The right methodology applied can
ensure that even though these challenges exist when
moving to SOA, significant complexity and
expense are taken out of the process through
productivity, standards-based technology and the
industry’s lowest Total Cost of Ownership.

The implementation should focus on SOA from
the ground up to facilitate not only the design and
build of an SOA, but also the control or
governance, deployment and management of that
SOA within the enterprise and beyond. By enabling
the full lifecycle of services, such a methodology
can reduce the cost and decrease the time to value
for an SOA.

5.1 Constructing and Modeling the custom

SOA Services
The need to retrain or upgrade existing skill sets
will depend on the platform selected for the SOA.
Many SOA platforms require extensive engineering
and knowledge of specific programming languages
in order to extend custom services and evolve SOA
throughout the enterprise. Most of today’s
development platforms, which are re-branding
themselves as Service-Oriented Architecture,
require serious and detailed knowledge of .NET,
J2EE, or other programming languages.

The ability for these platforms to enable
business service development, deployment and
management is, however, very limited. Services
developed using these frameworks, otherwise
known as Integrated Development Environments
(IDEs), require extensive engineering expertise, not
only for development but also for distribution. This
often results in the retraining or rehiring of IT staff.
But, the platform is needed that could be built for
SOA from the ground up, which is a key
differentiator when evaluating an SOA platform.

Early best practices for SOA strongly support a
model-driven approach to composite application
development, modularity, flexibility, and
extensibility. Application modeling is especially
useful to SOA, as it allows for architects to evolve
their solutions in flexible ways and enable
companies to explain, define, manipulate and store
processes, as they exist – apart from the specific
technology needed to support them.

Many codeless tools and claims have surfaced
over the years and many of them have failed when
it came to proving their promises. The evolution of
such claims has gotten closer to the mark over time,
and current technology and design metaphors have
made codeless development a reality.

Model-driven approach to Service-Oriented
Architecture enables technologists to focus on
building business services. By eliminating the time-
consuming process of manually writing code,
companies can drastically accelerate their solution
development.

5.2 Assembling SOA Components
Some of the confusion in the acceptance and
adoption of SOA has been the misconception that
Web Services and Business Process Execution
Language (BPEL) are the key components of
building out an SOA. Both have played a large part
in the evolution of business and application
development and certainly have their large
applicability. However, they are merely
components in successful SOA.

Services within the SOA can be created in
many different fashions – some in Java, some in
C#, and some in C or C++. Deploying these
services as Web Services would be indeed well
suited for interoperability, as they are by nature
heterogeneous, interoperable, and loosely coupled.
However, when building end-user applications or
high volume processes, Web Services may not be
the best choice.

Furthermore, Web Services are expensive in
both processing and bandwidth required. On
average, a Web Service invocation is nearly 10
times larger than the binary form of such an object
interaction [8]. Using eXtensible Markup Language
(XML) and Simple Object Access Protocol (SOAP)
requires huge chunks of bandwidth when dealing
with large numbers of transactions, as both the
SOAP transport and all data are passed as XML,
which is expressed as raw text.

BPEL, in theory, is closer to SOA today and
has been a good way to link and assemble some
business processes although it is not an enterprise
platform for deploying high volume custom

business applications. BPEL only enables the
calling of processes, but does not allow for new
processes to be developed.

Business Process Execution Language can be
an optional layer of SOA, but BPEL alone will not
deliver a Service-Oriented Architecture, as it relies
entirely on Web Services and XML. Some of the
early problems with BPEL have been difficulties in
adhering to appropriate standards [9].

Considerable customization is required to
implement BPEL. Standards are often lost in the
process, and many of the services end up becoming
proprietary solutions, thereby losing the ability to
be quickly extensible as the business requirements
change.

These are challenges that can be solved by
implementing a distributed infrastructure comprised
of Web Services, Java, and other native services.
Such architecture generates the ability to
orchestrate and assemble standards-based custom
business services that can be deployed and reused
across the enterprise, enabling the sustainable
alignment of IT and business requirements.

One of the most important practices for
building SOA is planning for the future as business
needs change. Services needed to be leveraged and
extended to immediately respond, without the need
to reinvent and reconfigure each process.

5.3 SOA Performance Control and

Monitoring
Some services built today will become a part of
larger service implementations in the future as
Enterprise SOA [10]. As the SOA grows into
several thousand services, manageability must be a
key consideration early on.

The main value propositions behind SOA are:
• reuse,
• efficient development,
• simplified maintenance,
• enabling the sustainable alignment of

IT, and
• portability.

These will provide a flexible evolution enabling
more advanced business processes.

However, managing those processes is a
significant challenge. The problem domain for SOA
control, i.e. managing service development and
deployment, includes delivery levels and solution
lifecycles.

In terms of delivery, control is required at the
application, systems and infrastructure levels. As
SOA implementations expand, different levels of

service management will be required in order to
deploy, distribute, extend, and monitor the SOA.

The SOA platform market contains many
technologies that address management and
infrastructure monitoring, however these tools do
not address the provisioning of service
development, integration, and distribution.

As services move through development, such
as quality assurance and delivery, maintaining
consistency and quality along the way is a key
component. The release cycle is often forgotten
element in many projects, too.

Once a project is released, a different set of
challenges arises for updating released versions of
the software due to the many dependencies that
exist. With SOA, the challenge is even greater as
the goal of SOA is to deploy services only once and
access them from anywhere.

Suppose a few thousands services being
deployed to many different servers throughout the
enterprise. The URL and location of those services
will differ from that of existing production services,
multiplied by the number of services being
released. The easiest solution for most would be to
redeploy the service many locations. This defeats
the value of SOA and creates more complexities
around service versioning and maintenance.

The problem of effective release management
and deployment of services can, however, be
solved. The platform used should naturally
maintain location independence and allow services
to progress through each development phase
without the need to duplicate to the same service in
multiple locations.

The platform should also provide service
management at the application delivery level,
enabling discrete control over business services as
they move across different business domains (e.g.,
Human Resources, Finance, Marketing, Customer
Service, etc.).

6 The Future Requirements
In tomorrow’s SOA model, many of the services
that will become a part of the solution are already
available and deployed to production systems. In
order to leverage these services without having an
affect on production environment, it will be
necessary to browse the environment, version
service integration and deployment.

In addition, service discovery and introspection
properties such as location, department, author, last
access and type of service are needed, which will
enable and simplify reuse from the start. This

functionality would allow administrators to visually
model and configure the best possible scenario for
application deployment.

In the future, a Web-based console should be
also developed to display more granular details
such as service invocation metrics, i.e. how many
times the service was requested, response time,
service authorization, and interactions between
services. For example, a business may want to track
how many times a product was purchased during a
particular time period, and how many times it was
out of stock. Service tracking at the application
level will prove to provide significant technical and
business benefits.

In terms of SOA lifecycle, control is required at
all phases – design, deployment and operation. As
mentioned earlier in the paper, the main value
propositions behind SOA will be reuse, efficient
development, simplified maintenance, and
portability. As SOA implementation expand,
companies will need a catalog of services and an
approval/workflow process, i.e. governance, to
ensure that the value propositions are realized.

7 Conclusion
According to OASIS, the Service-Oriented
Architecture (SOA) is an architectural style whose
goal is to achieve loose coupling among interacting
software agents or services.

Services integrated into SOA come in two
different types: coarse-grained and fine-grained.
The granularity is based on how much of a service
is exposed. The SOA model implies the loose
coupling of services of optimal granularity to
support the desired business processes

A primary goal of implementing Service-
Oriented Architecture is to simplify development
and implementation of new applications and
capabilities through aggregating many low-level
tasks into higher-level services.

A secondary goal of SOA is to enable any
application or process to utilize the services of any
other application or process, over any means of
interconnection.

The universality of SOA can help enterprises
use their existing systems in new ways, for new
purposes, for greater competitive advantage,
efficiency, and return on investment.

As today’s IT challenges continue to broaden
and the move to SOA increases, a fully integrated
platform focused on manageability and
interoperability will be the key to meeting and
exceeding the challenges of cutting edge industries.

References:
[1] http://www.oasis-open.org
[2] ***. Enterprise Service Bus (ESB) Solution.

http://www.capeclear.com, 2004.
[3] ***. ESB: Evolving Beyond EAI.

http://www.iona.com, 04/2005.
[4] Finkelstein, Clive. The Enterprise: Business

Process Management Languages, Part 1: BPEL.
http://www.dmreview.com/editorial/dmreview/,
02/2005

[5] Clabby, Joe, Web Services Explained, Prentice
Hall PTR, Upper Saddle River (NJ), 2003

[6] Newcomer, E. Understanding Web Services,
Addison-Wesley, Boston (MA), 2002

[7] Kaye, D., Loosely Coupled: The Missing Pieces
of Web Services, RDS Press, 2003

[8] Lefevbre, Alain. The True Nature of Web
Services”.
http://www.intranetjournal.com/articles/200106
/pap_06_13_01a.html, 13/06/2001.

[9] ***. "Principles of BPEL, Orchestration, and
the ESB". http://www.capeclear.com, 2004.

[10] Taylor, James. Decision Management
Applications.
http://www.dmreview.com/editorial/dmreview/,
05/2005

http://www.oasis-open.org/
http://www.capeclear.com/
http://www.iona.com/
http://www.dmreview.com/editorial/dmreview/
http://www.intranetjournal.com/articles/200106/pap_06_13_01a.html
http://www.intranetjournal.com/articles/200106/pap_06_13_01a.html
http://www.capeclear.com/
http://www.dmreview.com/editorial/dmreview/

