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Abstract:- A time varying control law is proposed for non-stationary linear continuous-time varying systems with non-symmetrical constrained control. Necessary and sufficient conditions for generalized componentwise asymptotic (exponential) stability are given by using the concept of mode-vectors. The asymptotic stability of the origin is also guaranteed. The case of symmetrical constrained control is obtained as a particular case. 
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We will further note the following: for two vectors x, y of 
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1. INTRODUCTION

This paper is devoted to the study of linear continuous-time varying systems described by (1):
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where 
[image: image23.wmf]n

)

t

(

x

Â

Î

 is the state vector and u is the  constrained control, that is:
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Matrices A(t) and B(t) are varying and satisfy assumption (3):
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This is a variant nonsymmetrical polyhedral set, as is generally the case in practical situations.

This model can also be used in connection with the previous works [1-2], allowing an increase of the dynamics of the state regulator. One can take for example
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Let us first consider the unconstrained case where the regulator problem for system (1) consists in realizing a variable feedback law as:
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The choose of such regulator has been the subject of many works from which we cite, [8] in the decentralized control case.

Taking into account (4), system (1) becomes a non-stationary system in the following form:
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Generally matrix F(t) is chosen such that an increase of system dynamics is obtained and system (8) is asymptotically stable.

It is well known that a linear time invariant system is stable if and only if all eigenvalues of the system matrix have negative reels parts [9]. However, this is no longer true for linear time-varying systems. Under the assumption of the non-stationary systems, the eigenvalues method for proving the asymptotic stability is not adequate. An alternative method is the use of matrix measure [6], that is:
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Remark: The choice of (9) is justified by using the Lyapunov function 
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In the constrained case, we follow the approach proposed in [11] and further developed in [1] and [12] and references therein. This approach consists of giving conditions on the choice of the stabilizing regulator (7) such that model (8) remains valid. This is only possible if the state is constrained to evolve in a specified region defined by:
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with 
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Note that this domain is unbounded where 
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The purpose of this paper is to define a special type of asymptotic (exponential) stability of (8), namely the generalized componentwise asymptotic (exponential) stability characterized by (5) and (10) ((6) and (10)). Necessary and sufficient conditions of the generalized componentwise asymptotic (exponential) stability of the system (8) are given.

2 PRELIMINARY RESULTS
In this section, we present some useful definitions for the sequel.

Consider two functions 
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Definition 2.1: The system (8) is called generalized componentwise asymptotically stable with respect to 
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Definition 2.2: The system (8) is called generalised componentwise exponential asymptotically (GCWEAS) if there exist 
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Remark: When 
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As is well known, the eigenvalues of a linear time-invariant system is invariant under an algebraic transformation. However, this is no longer the case for a linear time-varying system. In order to preserve the invariance of the eigenvalues of a linear time-varying system. We use the concept of eigenvalues and eigenvectors introduced in [4]. For simplicity of discussions, they will be called the extended eigenvalue (or simply x-eigenvalues) and the extended-eigenvector (or simply x-eigenvector). When they are discussed together, they will be simply called the extended eigen-pair (or simply x-eigenpair).

Definition 2.3 [4]: A differentiable non-zeros vector e(t) is said to be the extended-eigenvector (x-eigenpair) of the nxn matrix G(t), associated with the extended-eigenvalues 
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Definition 2.4 [4]: The nonzero differentiable vector 
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 is said to be the mode-vector of G(t) associated with the x-eigenpair 
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Remarks:1) From (9) the linear time-varying system (11) is asymptotically stable and then from [4], every mode vector 
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2) The algorithm for finding the x-eigenpairs of 
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Consider the following non-stationary continuous time linear system,
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The following results will be required.

Theorem 2.4: A necessary and sufficient condition for the system (15) to be CWAS
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[image: image100.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

)

t

(

1

)

t

(

2

)

t

(

2

)

t

(

1

H

H

H

H

)

t

(

H

~

;   
[image: image101.wmf]ú

ú

û

ù

ê

ê

ë

é

=

)

t

(

q

)

t

(

q

q

~

2

1

     
(17)


[image: image102.wmf] 

j

i

     

(t)

h

j

i

     

(t)

h

)

t

(

H

ij

ii

1

ï

î

ï

í

ì

¹

=

=

+

,    
[image: image103.wmf]ï

î

ï

í

ì

¹

=

=

-

j

i

     

(t)

h

j

i

 

          

0

)

t

(

H

ij

2

,   
[image: image104.wmf]0

t

t

 

³

"






(18)

Proof: (If) We change only matrix 
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In the symmetrical case 
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Corollary 2.5: A necessary and sufficient condition for the system (15) to be CWASq is
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Proof: By observing that 
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Theorem 2.6: A necessary and sufficient condition for the system (15) to be CWEAS is:
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Corollary 2.7: A necessary and sufficient condition for the system (15) to be CWEAS is
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3 MAIN RESULTS
In this section, we apply the results of Theorem 2.4 to the problem of the constrained regulator described in Section I.

Consider system (1) with the feedback law given by (7) and (9). The system in the closed loop is then given by (8). Let us make the change of variables,
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If there exists a matrix 
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then, the change of variable (20) allows us to transform dynamical system (8) to dynamical non-stationary system (15). The study of the generalized componentwise stability for system (8) with 
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Before giving the main result, we present all the necessary Lemmas. The first concerns (22), which is to be satisfied for every t. For this, let us define the set 
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In the stationary case: 
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Lemma 3.1: If a matrix 
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Equation (22) allows us to write
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It follows:
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In this step, we can generalize the results of [1] to the relations (31). This implies the existence of 
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We are now able to give the main result of this paper.

Theorem 3.4: A necessary and sufficient condition  for the system (8) to be GCWAS
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with matrix 
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when condition (34) is satisfied, matrix 
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The proof remains unchanged.

Comments:1) Conditions (32) and (33) guarantee that system (8) is componentwise asymptotically stable despite the existence of non-symmetrical constraints on the control. The choice of 
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Example 1: To show the effectiveness of the proposed regulator, we consider the simple first order system described by the following equation:
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From (32), the matrix H(t) is then computed as: 
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In the case when condition (33) is not satisfies, then we choose another set of extended eigenvalues 
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 and another set of extended eigenvectors.

Consequently, the componentwise asymptotic stability of the system despite the presence of the constraints is guaranteed.

Example2: Consider the system (1) described by the following:
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It is clear that the system matrix A(t) is unstable, 
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The set of admissible control 
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Let us impose the set of extended eigenvalues 
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Note that F(t) is invertible.

In this case 
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By applying the algorithm given in [4], the set of extended eigenvalues of 
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From (32), the matrix H(t) is then computed as:
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Note that the extended eigenvalues of matrix H(t) are 
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In the case when condition (33) is not satisfies, then we choose another set of extended eigenvalues 
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 and another set of extended eigenvectors.

Consequently, the componentwise asymptotic stability of the system despite the presence of the constraints is guaranteed.

4 CONCLUSION

In this paper, a time varying control law of non-stationary linear continuous time varying systems with nonsymmetrical constrained control is proposed. Necessary and sufficient conditions for generalized componentwise asymptotically (exponential) stability are given. The case of symmetrical case is obtained easily by taking 
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. Finally, the presented results are shown to be a generalization of previously results related to continuous time invariant systems.
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