
Modeling Subbands of a Wavelet Based Scalable Video Codec

HENDRIK EECKHAUT DIRK STROOBANDT HARALD DEVOS
MARK CHRISTIAENS

Parallel Information Systems (PARIS)
Electronics and Information Systems (ELIS)

Ghent University (UGent)
St.-Pietersnieuwstraat 41, 9000 Gent, Belgium

Abstract: In the RESUME project we explore the use of reconfigurable hardware for the design of portable
multimedia systems by developing a hardware-friendly scalable wavelet-based video codec. Our scalable
video codec provides the ability to decoded the video stream with reduced frame rate, resolution or image
quality directly from the original encoded video stream. This is important for portable devices that have
different Quality of Service (QoS) requirements and power restrictions.
Our video codec makes use of arithmetic coding to achieve compression by exploiting statistical redundancy
in video streams. This technique employs modeling for building its statistical information. In this paper we
explore the use of wavelet subband models. We demonstrate that even if the available memory is extremely
limited we come very close to the optimal compression.

Key-Words: scalable video, wavelet, arithmetic coding, context modeling

1 Introduction

“Scalable video” is encoded in such a way that it al-
lows to easily change the Quality of Service (QoS)
i.e. the frame rate, resolution, color depth and im-
age quality of the decoded video, without having to
change the video stream used by the decoder (except
for skipping unnecessary blocks of data without de-
coding) or without having to decode the whole video
stream if only a part of it is required.

Such a scalable video codec has advantages for
both the server (the provider of the content) and
the clients (the consumers). On the one hand the
server scales well since it has to produce only one
video stream that can be broadcast to all clients, ir-
respective of their QoS requirements. On the other
hand the client can easily adapt the decoding param-
eters to its needs. A home cinema system can de-
code the stream at full quality, while a small portable

PMVEE

DWTME MS AE

WEE

OUT

IN

Figure 1: High-level overview of the video encoder

client can decode the stream at low resolution and
frame rate without needing the processing power of
the larger clients. This way the decoder can optimize
the use of the display, the required processing power,
the required memory, . . .

The internal structure of one implementation of a
scalable encoder is shown in Figure 1 and was de-
scribed in [1, 2, 3]. It consists of the following parts:

ME: “Motion Estimation” exploits the temporal re-
dundancy in the video stream by looking for

1

similarities between adjacent frames. To ob-
tain temporal scalability (i.e. adjustable frame-
rate of the video), motion is estimated in a hi-
erarchical way as illustrated in Figure 2. This
dyadic temporal decomposition enables decod-
ing of the video stream at different bitrates. The
decoder can choose up to which (temporal) level
the stream is decoded. Each extra level doubles
the frame rate.

An intermediate frame is predicted from its ref-
erence frames by dividing it into macroblocks
and comparing each macroblock to macroblocks
in the reference frames. The relative positions
of the macroblocks in the reference frames with
respect to the intermediate frame are stored as
motion vectors. The difference between the pre-
dicted and the original frame is called an “error
frame”.

MVEE: “Motion Vector Entropy Encoder” is re-
sponsible for entropy encoding the motion vec-
tors.

DWT: The “Discrete Wavelet Transform” takes a
reference or error frame and separates the low-
pass and high-pass components of the 2D image
as illustrated in Figure 3. Each LL-subband is
a low resolution version of the original frame.
The inverse wavelet transform (IDWT) in the
decoder can stop at an arbitrary level, resulting
in resolution scalability.

WEE: The “Wavelet Entropy Encoder” is respon-
sible for entropy encoding the wavelet trans-
formed frames. The frames are encoded bitplane
by bitplane (from most significant to least sig-
nificant), yielding progressive accuracy (quality
scalability) of the wavelet coefficients (Figure 4).
The WEE itself consists of two main parts: the
“Model Selector ” (MS) and the “Arithmetic En-
coder” (AE). The MS provides the AE with con-
tinuous guidance about what type of data is to
be encoded by selecting an appropriate model for
the symbol (a bit) that has to be encoded next.
It exploits the correlation between neighboring
coefficients in different contexts. Finally the AE

performs the actual compression of the symbol
stream.

P: The “Packetizer” packs all encoded parts of the
video together in one bit stream representing the
compressed video in such a way that the different
types of scalability are fully supported.

Scalability in color depth is obtained by encoding
luminance and chrominance information in three dif-
ferent channels in the YUV 4:2:0 format. Omitting
the chrominance channels yields a grayscale version
of the sequence, allocating more bits to these chan-
nels increases the color depth.

R
1

R
2

H
8

H
4

H
12

H
2

H
6

H
10

H
14

H
1

H
3

H
5

H
7

H
9

H
11

H
13

H
15

Figure 2: Framerate scalability. Motion estimation
processes one Group of Pictures (GOP) consisting
of 16 consecutive frames. The arrows indicate the
dependencies between the estimated frames and their
references. R1 is the reference frame of this GOP,
R2 is the reference frame of the next GOP and the
Hi are the intermediate frames.

LL
0 HL

1

LH
1
HH

1

HL
2

LH
2

HH
2

Figure 3: Resolution scalability. Numbers in sub-
script reflect the resolution layers.

The final goal of the RESUME project [4] is to im-
plement a real-time decoder. Therefore we need hard-

2

(a) (b)

(c) (d)

Figure 4: Quality scalability: decoding more bitplanes
of the wavelet transformed image of Figure 3 gives a
more accurate wavelet transformed frame.

ware acceleration. We target an FPGA implementa-
tion to effectively support scalability [5]. Because the
WEE gives the most opportunities for improvement
we will now focus on this part of the codec.

2 A Hardware-Friendly Wavelet
Entropy Decoder

In [3] we proposed a novel approach for coding the
entropy of the wavelet transformed frames. In this
paper we focus on the remaining research question of
how the entropy encoder can be optimally configured.

2.1 The Algorithm

The new algorithm of [3] is shown in Figure 5. All
subbands of the wavelet transformed channel are en-
coded (and decoded) totally independently. This en-
ables the processing of all subbands of the wavelet
transformed color channel of the frame in parallel.
The subbands are processed bitlayer by bitlayer from
top to bottom. The top is the bitplane that con-
tains the most significant bit of the largest absolute
value of all coefficients. The bottom is the bitplane
containing the least significant bits. The bitlayers are

encode_frame:
for all subbands:
load_subbandmodel
if (LL-subband of reference frame)
encode (mean of frame, data model)
subtract mean from resolution level

encode (number top bitplane, data model)
for all bitplanes
encode_bitplane

encode_bitplane:
for all bits //scanline order
if coefficient was not significant yet
if starting bitplane
encode (bit, toplayer model)

else
encode (bit, significance model)

if bit becomes significant
encode (sign, sign model)
update bitmaps

else //was already significant
encode (bit, refinement model)

Figure 5: Entropy encoding of one wavelet encoded
frame.

processed in scanline order and all data from one sub-
band is processed sequentially since all bits are now
encoded based on information of previously encoded
bits.

The compression of the entropy encoder is a result
of exploiting statistical dependencies between neigh-
boring pixels. These dependencies are represented by
models. A model contains information about the con-
text of the incoming bit and thus about its expected
value. Ideally this context would contain all useful
information about the neighborhood of the encoded
bit. But since this is too expensive, the context is
kept small to limit memory accesses.

The Model Selector (MS) (see Figure 6) is the part
of the video codec that is responsible for selecting
these models. The MS exploits statistical character-
istics by encoding bits with a similar distribution us-
ing the same arithmetic coder. These characteristics
are for example the fact that coefficients become sig-
nificant (i.e. we encounter its most significant bit)
in clusters. For optimal compression, storing all in-
formation about previously processed data would be

3

ideal but since this excludes an efficient hardware
implementation only the most relevant information
is stored. Our algorithm limits this information to
the sign and the significance of each coefficient. This
information can easily be organized as two bitmaps
with dimensions equal to the subband’s. From these
bitmaps the number of horizontal, vertical and diag-
onal significant (or negative) neighbors of the current
coefficient are counted to determine the model for the
arithmetic coder. In total there are 64 models:

• 1 data model that is used to encode data such
as the number of the starting bitplane and the
mean value of the LL-subband.

• 35 significance models: These models are
used to predict the most significant bit of each
wavelet coefficient. This group of models is di-
vided in two groups: 8 highest bitplane mod-
els and 27 remaining bitplane models. We need
these special models for the highest bitplane be-
cause there is no information about higher bit-
planes when we are encoding this type of bit-
plane.

• 27 sign models: Depending on the sign of sig-
nificant neighboring pixels, the sign in the hor-
izontal, vertical and diagonal direction is more
likely to be positive or negative.

• 1 refinement model, used to encode the refine-
ment bits. These are the remaining bits we come
across when processing lower bitplanes than the
bitplane where the wavelet coefficient became
significant. These bits have the characteristics
of noise and are therefore hard to predict.

To determine the models at the borders of the sub-
band, the bitmaps are extended with a symmetric
expansion.

2.2 Arithmetic Coder

For the arithmetic coder we opted for a modified ver-
sion of the CABAC arithmetic entropy encoder used
in the AVC codec [6, 7]. This is a low-complexity
adaptive, binary arithmetic coder with a probability

Model Selection Arithmetic Encoding

0.3 0.7

0.4 0.6

0.45 0.55

0.5 0.5

0.6 0.4

0.7 0.3

Significance bitmap

Sign bitmap

Current bit

Figure 6: The model selector selects a model based on
information of neighbors, stored in sign- and signif-
icance bitmaps. Once the model is determined, the
arithmetic encoder encodes the bit with the selected
model.

estimation algorithm that is well suited for an effi-
cient hardware implementation.

We made a few changes to this arithmetic coder to
make it a better fit for our wavelet entropy encoder.
Since all memories on an FPGA are 9 bit wide, we
augmented the 7 bit state per model (i.e. the current
estimated probability of the model) to 9 bit. This
increased the accuracy for probability estimation and
as a consequence the compression performance. We
also perfected the transition rule table for updating
the probability estimation, but this falls outside the
scope of this paper. The fact that only a 9 bit state
per model needs to be stored, means that we only
require 576 bits for the 64 arithmetic models.

2.3 Initialization of models

Arithmetic coders perform very good if it is possible
to accurately estimate the distribution of the incom-
ing bitstream. This is achieved by guiding the arith-
metic coder with models, that in the ideal case stand
for a certain fixed probability, resulting in near opti-
mal compression. This suggests using lots of models
with each their own probability. But if we employ
a high number of models, how can the arithmetic
coder estimate the probability of the models that are
rarely used? We tackled this problem by estimating
the probabilities beforehand, by observing the real

4

probabilities for a set of reference video sequences.
By initializing each model with these precalculated
values we reach the actual probability much sooner
than if we initialized the model conservatively at 0.5.

3 Subband models

There are a lot of different types of subbands which
all have distinct statistical properties. First of all
there are differences between the LL, HL, LH and
HH subbands. In addition, models will be different
for subbands of different resolution layers (4 in our
case). If we also take the difference between the three
color channels and the position in the temporal frame
hierarchy into account, we distinguish 480 different
types of subband models (for 4 resolution levels).

There are three main approaches in selecting ap-
propriate subband models. One could select the min-
imal or maximal number of subband models, or could
select a well considered subset.

3.1 The maximal case

If each subband type has its own private 64 arith-
metic models, there are 30720 different models in
total. The cost for using a high number of differ-
ent subband models is small because we use only 64
arithmetic models at a time. In any case the states of
the 64 arithmetic models must be overwritten (reset)
every time we start decoding a new subband. So we
only have to swap in the appropriate subband model
that initializes the 64 models. As a consequence there
is no execution cost in using lots of subband models.
The only cost is in the storage and fetching of the sub-
band models; the total number of calculations stays
the same.

The advantage of using many subband models is
that the arithmetic models can be initialized more
accurately for each situation since the probability
statistics for the different subbands can be predicted
separately.

3.2 The minimal case

In the minimal case we use the same set of 64 arith-
metic coder models for each subband. This is the op-

Table 1: Resource requirements of the three cases.
Min. Med. Max.

temporal classes 1 5 16
color channel 1 2 3
resolution subband 1 10 10
subband models 1 100 480
models 64 6400 30720
bits 576 57600 276480

timal case from a storage and caching point of view.
But the initialization will of course be much coarser.

3.3 The medium case

We can easily reduce the number of subband models
compared to the maximal case. Since motion esti-
mation is done in a hierarchical way, all frames of
the same (time) level are handled in the same way.
A natural choice is to group the sixteen positions in
the temporal frame hierarchy per timelevel. This re-
duces the numbers of subband models by a factor of
5/16. If we also assume that the U and V chromi-
nance channels have very similar statistics, we reduce
the number of subband models from 480 to 100. This
shrinks the necessary storage memory by a factor 4.8.
Other combinations are also possible but are not fur-
ther explored in this paper. This choice suffices to
illustrate the trend.

4 Results

In Figure 7 the average PSNR for decoding 49 frames
of the “foreman” sequence (CIF@30Hz) at different
bitrates is plotted for the three approaches. The
PSNR of each frame is calculated as follows. If Yi,j ,
Ui,j and Vi,j and Y ′

i,j , U ′
i,j and V ′

i,j are resp. the lumi-
nance and the two chrominance channels of the origi-
nal and reconstructed frame of h×w pixels, then the
PSNR is defined as follows:

10 log10

2552 3
2hw∑

(Y − Y ′)2 +
∑

(U − U ′)2 +
∑

(V − V ′)2
(1)

Since the absolute difference in the three cases is
nearly invisible in Figure 7, we also plotted the rel-

5

0 2500 5000 7500 10000 12500 15000 17500
30

32.5

35

37.5

40

42.5

45

47.5

50

52.5

55

PSNR (foreman 3 GOPS)

Maximum
Medium
Minimum

bitrate (Kib/s)

PS
NR

 (d
B)

Figure 7: PSNR vs. bitrate for 49 CIF-frames of the
foreman sequence.

ative difference in Figure 8. The maximal case gives
the best PSNR but the difference is very small, cer-
tainly compared to the medium case. The relative
loss in PSNR is on average only about 0.1% when we
use only one model.

5 Conclusions

In this paper we investigated the entropy encoding
part of our scalable wavelet based video codec and
explored the use of wavelet subband models. We can
conclude that the deployment of lots of models indeed
increases the PSNR but that the absolute gain is very
small. Since the overall cost is rather low, the surplus
could be justified in most situations. On the other
hand, in situations where memory usage is critical,
the PSNR penalty for using only one subband model
is very limited.

Acknowledgement This research is supported by
I.W.T. grant 020174, F.W.O. grant G.0021.03, by GOA
project 12.51B.02 of Ghent University and by the Altera
University Program. Harald Devos is supported by the
fund for scientific research Flanders (F.W.O.).

References

[1] Munteanu A. Wavelet Image Coding and Multiscale
Edge Detection - Algorithms and Applications. Ph.D.

0 2500 5000 7500 10000 12500 15000 17500
0.996

0.997

0.998

0.999

1.000

1.001
Relative PSNR

Max. vs. Max.
Med. vs. Max.
Min. vs. Max.

bitrate (Kib/s)

re
la

tiv
e

PS
NR

Figure 8: The relative differences in PSNR of Fig-
ure 7.

thesis, Vrije Universiteit Brussel, 2003.

[2] Stroobandt D., Eeckhaut H., Devos H., Christiaens
M., Verdicchio F., and Schelkens P. Reconfigurable
Hardware for a Scalable Wavelet Video Decoder and
Its Performance Requirements. Computer Systems:
Architectures, Modeling, and Simulation, vol. 3133,
July 2004, pp. 203–212.

[3] Eeckhaut H., Devos H., Schrauwen B., Christaens M.,
and Stroobandt D. A Hardware-Friendly Wavelet En-
tropy Codec for Scalable Video. In DATE 2005 De-
signers’ Forum Proceedings, March 2005.

[4] The RESUME project: Reconfigurable Embedded
Systems for Use in Scalable Multimedia Environments.
http://www.elis.UGent.be/resume.

[5] DeHon A. The Density Advantage of Configurable
Computing. IEEE Computer, vol. 33(4), April 2000,
pp. 41–49.

[6] Marpe D., Schwarz H., Blättermann G., Heising G.,
and Wiegand T. Context-Based Adaptive Binary
Arithmetic Coding in JVT/H.26L. Proc. IEEE Inter-
national Conference on Image Processing (ICIP’02),
vol. 2, September 2002, pp. 513–516.

[7] Marpe D., Schwarz H., and Wiegand T. Context-
Based Adaptive Binary Arithmetic Coding in the
H.264/AVC Video Compression Standard. IEEE
Transactions on Circuits and Systems for Video Tech-
nology, vol. 13(7), July 2003, pp. 620–636.

6

