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Abstract: Evolution becomes an important concern of software architectures, as well at architectural level as at application
one. In addition, such evolution can be rather static (at specification time) than dynamic (at execution time). To face this
important problem of software-architecture evolution, it is necessary to consider the evolution in a generic and uniform
way by : defining the same concepts to manage the evolution of any architectural elements at any level of abstraction and
independently of the software architectures description or implementation language. Our work aims to reach these
objectives through the proposed model, called SAEV(Software Architecture EVolution Model). SAEV offers evolution
operations described by evolution strategies and evolution rules to manage the architectural elements evolution. These
rules and strategies must respect all invariants defined on each architectural element to safeguard the architecture
coherence across the evolution. SAEV proposes also an evolution mechanism, which describes the execution process of the
evolution model.
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1. Introduction We aim in this work, to enhance software evolution, by
proposing an evolution model called SAEV (Software
Architecture Evolution Model). We consider the software
architecture through three abstraction levels namely, from
the most abstract one: the meta level, the architectural one
and the application level. SAEV aims to describe and
manage the evolution of software architecture at these
different levels in a uniform way: as well the evolution of
architectures as the evolution of applications. For this,
software architecture elements (like component, interface,
connector and configuration) are considered as first-class
entities and SAEV leans on its own concepts and
evolution mechanism.

Software architectures takes a predominant importance
within software engineering area for its characteristics of
re-use, assembly and deployment of its entities. It
improve the development and the evolution of large and
complex systems. Software architecture offers a high
abstraction level for the description of systems, by
defining its architecture in terms of components
describing the systems functionalities and the connectors
which express the interactions among these components
[19]. Several Architecture Description Languages (ADLs)
are proposed to aid the architecture-based development,
such as C2 [1], ACME [5], Darwin [9]. Most of their The remainder of this paper is organized as follows:

efforts focus on the systems specification, development section 2 describes the related work, section 3 presents our
and deployment, few works are devoted to their evolution mains objectives and motivations; section 4 presents the
problems. For the ADLs that approach this problematic, minimal and consensual architectural elements of ADLs
there proposals are even limited to some techniques such and their abstraction levels; section 5 describes the

as subtyping, inheritance, composition [12]. proposed evolution model. Section 6 describes the



application of SAEV to the different abstraction levels,
before concluding and presenting our perspectives.

2. A state of the art

Evolution is considered a key aspect of architecture-based
development, because design decisions at the architectural
level have far reaching consequences on the resultant code
[8]. In the research literature, we can distinguish two
kinds of architectural evolution, static evolution and
dynamic evolution.

2.1 Static evolution

Static evolution concerns with modifying the architecture
of system at the time of its specification. Then, once the
system is implemented, we must stop it to make
modifications, then produce another executable system.
This category of evolution is supported by operational
mechanisms often inspired by those of object-oriented
evolution and often influenced by the programming
language which will implement the specification . We
present in the following some of these mechanisms:

Instantiation: software architecture distinguishes between
component and connector types, where component types
are abstractions that encapsulate functionalities into
reusable blocks, and connectors types are abstractions that
encapsulate components communication. A component
type can be instantiated multiple times in a single system.
Regarding connectors, only ADLs that model connectors
as first-class entities support their instantiations. ADLs
such Darwin[10], Metah[20], and Rapide[9] don’t support
connectors instantiations, since they don’t model them as
first-class entities.

Inheritance and subtyping: they are two different ways of
reusing models. Inheritance permits the reuse of a model
itself; meanwhile subtyping supports the reuse of objects
of a model. The inheritance improves reusability and
evolution, allowing the replacement of components and
connectors within the system by specialized versions,
which maintain some of the properties of the original
ones. Subtyping is where an object of one type may safely
be substituted where another type was expected. In
software architecture components and connectors are
architectural types and they are distinguished from the
basic types(e.g., integers, characters, array, etc.). We can
see three different components subtyping relationships:
interface subtyping,  behavior  subtyping  and
implementation subtyping [16]. For example, Interface
subtyping (Int) requires that if a component Cpl is an
interface subtype of another component Cp2, then Cp2
must specify at the least the provided and most the
required interface elements from Cpl.The ADL C2[2]
supports multiple subtyping by offering a mechanism to
select what parts of a component can be changed
(behavior, interface, implementation) and what can’t,
using keys such as and, or, not . Whereas, ADL like
ACME]JS5] supports strictly subtyping using its extends

features. Unicon[18], Metah[20] for example define
components by enumeration, so they don’t provide any
mechanism to evolve them. Only ADLs that don’t model
connectors as first-class entities do not provide a
mechanism to inherit them, these include ADLs such
Darwin[10], Metah[20], and Rapide[9]. Several ADLs
such as ACME support connectors’ inheritance using
mechanism identical to components inheritance.

2.2 Dynamic evolution

Dynamic evolution is a new concern in ADLs, it is called
also “active evolution” or “run-time evolution” in [15]. It
means the possibility of introducing modifications in
system during its execution. This is an important
characteristic, as some critical systems can’t be stopped, to
evolve them. Dynamic changes of an architecture may be
either planned at architecture specification time or
unplanned [12]. In the first case the changes likely to
occur during the execution of the system must be known
initially, so they must be specified at the description of
architecture. Rapide[9] supports conditional configuration,
using its clause where which enables a form of
architectural rewiring using the /ink and unlink
operators[13]. Dynamic ACME associates with each
element a multiplicity which can indicate the number of
instances of this element or if it is defined, undefined,
optional, etc. It associates also to the specification a clause
opened or closed. The specification is considered closed if
all the elements likely to be added are defined in the
architecture specification. It is considered opened if the
structure or elements specification are uncompleted.

The unplanned evolution places no restrictions at the
architecture specification time on the kinds of allowed
changes[12]. Thus, the ADL supporting this kind of
evolution must offer architecture modification features,
which allows the architect to specify changes during the
system execution. C2[1] for example specifies a set of
operations for insertion, removal and rewriting of
elements in architecture at runtime. C2 offers also the
ArchShell tool which enable interactive specification,
execution and run-time-modification of C2-style
architectures by dynamically loading and linking new
architectural elements[15].

3. Motivations and main objectives

Developed systems evolve as well as their architectures.
We may need, for instance to add new components, to
modify the existing components or to modify the
connections between these components. This evolution
must be identified and managed to maintain the
architecture coherence of the evaluated system. We
propose SAEV as a solution to face this problematic. We
are interested more precisely by the structural evolution of
architectures. For that SAEV must :

- abstract the evolution, from the specific behaviors of
architectural elements. That allows to:



o define mechanisms for the description and the
management of the evolution independently of the
architectural elements and their description
languages;

o support the re-use of these evolution
mechanisms in several cases of evolution.

- be open to the addition of new evolutions, in
particular those that are not envisaged initially by
the model. It must be for that reflective and
adaptive.

- Support static evolution (at the architecture
specification time) as well as dynamic one (at the
application execution time).

To achieve these objectives, SAEV must take into
account all architectural elements proposed by ADLs. We
present the most important elements in the following
section.

4. Main architectural elements

4.1 Presentation of the architectural elements
We present hereafter the main architectural elements
commonly supported by the majority of ADLs ([5],
[6],[11], [19]). We present first their definitions (most
accepted by the software architecture community), their
Meta model, then we position them according to different
abstraction levels.

Component represents the computational elements and
data stores of a system. It is described by an interface and
one or more implementations. Connector represents the
interaction among components as well as the rules that
control this interaction. It is mainly represented by an
interface and one or more implementations. Interface is
the only visible part of components and connectors. It
provides the set of services (provided or required) and
interaction points. The interaction points of component are
called ports (provided or required port). Those of the
connectors are called roles (provided or require roles).
Configuration describes how components and connectors
are fastened to each other. It is described also by an
interface which provides a set of interaction points
(provided and required ports) and a set of services. We
distingue two kinds of links used to fasten configuration’s
elements the attachments and the bindings. The
attachements express which ports of a given component
connected to which roles of a connector (a provided port
can be attached only to a required role and a required port
can be attached only to a provided role). The bindings
define links among: a port of a composed component and
those of its subcomponents, a role of a composite
connector and those of its subconnectors or among the
ports of a configuration and those of its components These
elements are represented by the following meta model
described using the class diagram of UML[4].
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Figure 1. Architectural elements Meta model

Each architectural element is represented by a class and
each element can be connected to other elements by an
association of composition. Thus each element is
characterized by an interface and its contents (elements
which compose it).

4.2 Software Architecture abstraction levels
Some of the surveyed ADLs such as C2 [1], ACME [5]
and Rapide [8] consider components and connectors as
first-class entities and distinguish respectively the
component-type and the connector-type from their
component-instances and connector-instances. But, this
distinction is not valid for the configuration which is often
considered only at the application level as a graph of
components-instances and connectors-instances. In our
Work, we consider all architectural elements as first-class
entities and with three abstraction levels: the Meta level,
the Architectural level and the Application level.

Meta level

] e - onnector [
con entimplem entation 0.
) onnectorimplementa
/[ Connectorinterace
= Architecfure
S~ :ma Client/gerveur
| u
CSconf

Architectural
level

>
instance of

An application
Clignt/Serveur

Application
level

Figure 2. Architectural elements abstraction levels

Meta level: it is the level of definition of all ADLs
architectural elements, like configuration, component,
connector, interface, etc.

Architectural level: In this level a system architecture is
describe using one or more instances of the architectural



elements of the meta level. The Figure 2, presents a
Client/Server architecture with a Configuration: CSConf;
three components : client, server, Database and of two
connectors N1 and N2.

Application level: In this level we can define one of more
applications in accordance with their architecture defined
at level in the top. For example, from the preceding
architecture client/server, we can build an application
made up of: one instance of the configuration CSConf: Cf,
two instances of the component client: C1, C2 and one
instance of the component Database: DBoracle, one
instance of the component server: S1; two instances of
connector N1: N1-1, N1-2 and one instance of connector
N2: N2.1.

5. SAEV: Software Architecture EVolution
model

The evolution of software architecture is reflected through
the different changes carried out on its elements. These
changes can be, for example the addition of a component,
the deletion of one of its components,etc. Each change
may cause also impacts that should be managed to
maintain the whole architecture in a coherent state.

Basing on these concerns and the previous objectives,
SAEV offers a whole of concepts to describe and manage
the software architecture evolution.

5.1 SAEV Meta model
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We associate to each architectural element an evolution
strategy. A strategy gathers the whole of evolution rules
which describe the operations that can be applied to this
architectural element. Thus, each evolution rule must
respect the invariants defined on this architectural
element. The evolution execution process is managed by
the evolution manager.

We detail each concept in the following section. We
illustrate only the evolution of the architectural level but
the principle remains the same for the application level
evolution.

5.2 SAEV concepts

a. Architectural element : represents any element of
software architecture. It can be for example a
configuration, a component, a connector, interface, etc.

b. Invariant : represents an architectural element
constraint which must be respected throughout its life

cycle. Any change in the architecture must maintain the
correctness of this invariant. We present hereafter the
invariants associated with the configuration:

A.Element Invariants
— a configuration must have an interface, by which it
can delegate with other configurations or with its
a components.
S
Eﬁ — a configuration must be composed at least of one
E component;
=2 — aconnector must connect at least two components.
=
— a component can not be related directly to an other
component.

TABLE 1. EXAMPLES OF ARCHITECTURAL ELEMENTS INVARIANTS

c. Evolution operation : is an operation which can
be applied to the architectural element or to its sub-
elements and which cause its evolution. We have
identified the following evolution operations: Addition,
Deletion, Modification, Substitution. For example the
evolution operations of configurations are :

- Addition / deletion / modification / substitution of a
provided / required port or service.

- Addition / deletion / substitution of a component or
connector.

- Modification of the name of a component or connector

d. Evolution Rule : describes the execution of an
operation on a given architectural element. It expresses the
necessary conditions to execute this operation as well as
the rules to be triggered if necessary on the other
architectural elements, to propagate the rule impacts.

The evolution rules are based on the ECA formalism
(Event /Condition /Action). Thus each evolution rule is
made of:

- an event: is the evolution invocation coming from the
designer or from another rule. It is intercepted by the
evolution manager;
- one or more conditions: that must be satisfied to
execute the action part of the evolution rule.
- one or more actions, an action can be an:
o event, in this case, it will be redirected toward
another rule;
o elementary action to be executed on the
architectural element. We note them: Architectural-
element-name. Execute.operation-name (parameters);

We give in the following example of evolution rule :
Event : delete-component(Cf: Config, C: comp);

Condition: C € comp(Cf), provided-interface(C) connected to provided-
interface(Cf), 3 NCc connect(Cf) and ¥V Ne NC N is connected to C
and N is not charred

Action:
For N e NC delete-connector (Cf,N)

For b ebindings(Cf,C) delete-binding(Cf,C,b)

For Ie interface-comp(C) delete-interface-comp(Cf,C,I)
C.Execute-delete-component(Cf; C)




The rule R1 describes the deletion of the component C
belonging to the configuration Cf. This rule triggers firstly
the deletion of connectors connected to C, then the
deletion of bindings between the component C and
configuration Cf, the deletion of the interface of C and
finally the deletion of the component C.

The whole of the defined evolution rules is stored in a
rules base. The designer will be able to re-use these rules
or to create his own evolution rules.

e. Evolution strategy : we associate with each
architectural element an evolution strategy. A strategy
gathers the whole of the evolution rules which describe all
the evolution operations that can be applied to this
architectural element. The table 3 presents example of a
strategy S1 associated with the configuration.

Addition R1,R10
Deletion R2,R3
Substitution R6,R9
Modification R3,R4

f. Evolution manager: is an actor, representing
the processing system of SAEV. Its role is intercepting the
events emanating from the designer or the evolution rules
towards an architectural element. Then it triggers the
execution of the corresponding evolution rules, according
to the evolution strategy associated with this architectural
element. We detail this process in the following section.

5.3 SAEV Evolution mechanism
The evolution mechanism describes the execution process
that must be followed to carry out a given evolution. We
describe this process using the following UML sequence
diagram [4].
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The evolution is triggered automatically by any
event emitted by the designer towards an
architectural element. The evolution manager :

- 1: intercepts this event;
- 2: and 3: selects the evolution strategy associated
with the architectural element invoked by the event ;
- 4: and 5: selects in this strategy the evolution rule that
correspond to the event and which have a satisfied
conditions;
- 6: triggers the execution of the action part of the
selected rule. Two cases can arise:
o7: if the action corresponds to an event, the
manager intercepts it also and follows the
preceding steps (1: to 6:).
08: if it corresponds to an elementary action, it
triggers then its execution.
- 9: These steps are renewed as much as the manager
intercepts new events;

6. SAEV and the abstraction levels

The model SAEV must be able to describe and manage
the evolution of software architecture at the
architectural level as well as at the application level.
Thus, it can be positioned at the meta level to manage
the evolution of the architectural level and it can be
positioned at the architectural level to manage the

evolution of the application level. This is illustrated by
the following figure:
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Figure 5. SAEV and the abstraction levels

At the meta level, SAEV can extend its concepts
(relation I1) to manage the evolution of any
architecture described with any ADL. It proposes, for
that the same evolution rules, invariants, evolution
strategies. For example, SAEV proposes the evolution
rule R1, which describes the deletion of any
Component of any architecture. At the architectural
level, SAEV allows the designer to extend the concepts
of SAEV at the meta level (12 relation) by considering
the elements of its own architecture. For example, for
the client/server architecture (figure 5-b), the designer
can extend the evolution rule R1 proposed at the meta
level, with the rule RI.1 which describes the deletion



of the specific component Client. In addition of the
deletion of component, the rule R/./ specifies what is
necessary to delete a component Client from an
architecture client/sever.

7. Conclusion

We have proposed in this article SAEV a model for
software architecture evolution independently of their
description languages. SAEV offers a set of concepts to
describe and manage the evolution of a given
architecture. We worked on the most common
architectural elements of ADLs but it can be applied to
any other architectural element of any ADL. SAEV
associates an evolution strategy to each architectural
element. A strategy gathers evolution rules describing
all evolution operations of this architectural element.

SAEV answers objectives, that we fixed (section 3):
the evolution is described independently of the
architectural elements behavior; the evolution
mechanisms (evolution strategies, evolution rules,
invariants) are the same to manage the evolution of any
architectural element at the architectural level as well
as at the application level. We have chosen to
implement our model with UML 2.0[14] which is a
good standard for software development. This
implementation will offers to UML2.0 an architecture
evolution support. It will also allow SAEV to be
reflexive, so it can be used to evolve its own
architecture.

We aim to study the influence of the architecture
evolution on the application level and vice versa, next
we will study the application of the evolution model on
the meta level. This later perspective will allow the
evolution of a given ADL, for example by adding, or
redefining of new concepts.
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