
 Business Process Design based on Web Services:
The C.O.S.M.O.S. Environment

LOUKAS GEORGIOU
School of Informatics

University of Wales-Bangor
Dean Street Bangor Gwynedd, LL571UT

UNITED KINGDOM

ODYSSEAS I. PYROVOLAKIS
Hellenic Naval Academy

Terma Chatzikyriakou
185 39 Pireaus

GREECE

Abstract: Today’s Enterprises and Organizations are facing the problem of Software Integration and the
difficulty to efficiently design and implement their Business Processes using cutting-edge Information
Technology. The problem investigated in this paper is the creation and design of executable Business
Processes using technologies and standards such as XML, Web Services, and Java. Our proposal, the
C.O.S.M.O.S. (Cooperation, Orchestration and Semantic Mapping of Services) environment, is an
environment that enables the user to create, design and modify executable Business Processes following the
BPEL specification, an XML based language for the Orchestration and Choreography of Web Services.
C.O.S.M.O.S. environment, attempts to be a complete and easy to use application for the design of Business
Processes. It provides two perspectives for the users: a Manager-oriented interface, that includes a graphical
enabled design environment of Business Processes and a Developer-oriented that provides an advanced XML
Workflow Editor and functionalities such as validation and deployment of the BPEL Workflow.

Key-Words: Web Services, Software Engineering, Business Process Modeling, workflow, IDE, XML, BPEL

1 Introduction
The evolution of Information Technology brought
new opportunities to enterprises and organizations,
and changed the way of doing effectively and
efficiently business. On the other hand the
continuously increasing demand for better, faster
and smarter software systems, and the plethora of
offered solutions by different vendors brought a
software systems’ integration nightmare. The
enterprises spent huge amounts of money trying to
integrate various non-compatible systems and
applications in order to automate their business
processes and to collaborate with their partners. That
situation known as the Application Integration Crisis
is one of the most critical Information Technology
issues.

In the past many inspired ideas such as CORBA,
Java RMI and Microsoft DCOM applied in order to
solve the problem of software integration [1]. All of
them were promising technologies but their main
drawbacks were issues concerning security,
complexity, vendor’s proprietary standards and the
absence of interoperability between these diverse
protocols.

The great penetration of the Internet and the
adoption of the XML technology enabled the
creation of a new software integration technology
widely known as Web Services. A quite good
definition for Web Services is that “they are self-

described and modular business applications that
expose the business logic as services over the
Internet through programmable interfaces and using
Internet protocols for the purpose of providing ways
to find, subscribe and invoke those services” [1].

One of the main open issues of Web Services is
their process flow and control. Providing solution
for applications interoperability is not enough, and
there is a need for the specification and
implementation of executable Business Processes
[2].

In this paper the creation and design of executable
Business Processes using technologies and standards
such as XML, Web Services, and Java is
investigated. Our proposal, the C.O.S.M.O.S.
(Cooperation, Orchestration and Semantic Mapping
of Services) environment, is an IDE (Integrated
Development Environment) that enables the user to
create, design and modify executable Business
Processes based on the BPEL specification, an XML
based language for the Orchestration and
Choreography of Web Services.

2 Web Services & Business Modeling
The main characteristic of Web Services is the
adoption of the XML technology as the core
building block. This made Web Services
independent from operating systems, platforms,
vendors and programming languages [2]. The data

exchanged between Web Services and consumers
are defined with XML. Even the description of Web
Services and the protocols used by Web Services are
defined with XML.

Another feature of Web Services is the operational
and architectural model they use, known as SOA
(Service Oriented Architecture) [1]. SOA is an
evolution from the computer-based and object-
oriented service model into a new type of
applications where everything is encapsulated as a
service that can be invocated over the Internet.

The concept of Web Services is to use XML
defined protocols for communication (SOAP) ,
description (WSDL) and discovery (UDDI) of
software services over the Internet (Fig.1).

Fig.1, Web Services Architecture

Web Services seems to be the most promising
technology of the near future in the area of software
integration [4]. The greatest software vendors are
investing huge amounts of money and effort to
support this new technology.

Even though the future seems to belong to them,
Web Services are still a new technology and in
addition their inherited drawbacks, like the
exchanged messages size (because of XML) and
performance, there are some very important open
issues such as process flow, transaction
coordination, and message routing . A plethora of
proposed specifications and protocols [5] trying to
solve the various issues of Web Services, lead to the
danger of loosing interoperability. For this reason
the research community established the Web
Services Interoperability Organisation (WS-I) which
published the Basic WS-I Profile.

2.1 Business Process Execution Language
(BPEL4WS)

Web Services promise the interoperability of
applications in a vendor independent way. Only this
is not enough for the systems integration between

departments, organizations and partners, and for the
implementation of automated and flexibly Business
Processes and Workflows.

The Business Process Execution Language for
Web Services (BPEL for short), an initiative from
IBM, Microsoft, Siebel Systems, BEA and SAP,
models the behaviour of Web Services in a business
process interaction. It is the only specification today
that models both the Orchestration and
Choreography aspects of a Business Process.

Orchestration refers to the actual execution of a
Business Process or Workflow. It controls the flow
of the various activities internal to the process, like
invocation of Web Services, messages handling,
business logic and rules. On the other,
Choreography describes the interfaces and the
communication protocol between two or more
partners. It tracks the message sequence between
Web Services in an abstract manner.

BPEL is an XML based language that provides
support for both executables (Orchestration) and
abstract (Choreography) business processes [6], and
is the technology used for the implementation of
business processes design and execution in this
project.

BPEL describes a business process using two
aspects: Orchestration and Choreography (Fig.2) [6]
and is the only specification today doing so.

Fig.2, Web Services Orchestration and Choreography

2.1.1 BPEL Goals
According to the authors of the specification, the
BPEL language has the following goals, which
formed the base of their work [7]:
Web Services as the Base. The entities interacted in
the business process are Web Services. The Web
Services are defined using the Web Services
Description Language (WSDL) and the interaction
is abstract. That means that the BPEL uses the
abstract interface of a Web Service to interact with it
and not the actual reference to it.
XML as the Form. The Business Process is
modelled using an XML based language. It
describes a process with XML tags and in that way
it gains portability. Any vendor can build its own
implementation of design tools or execution engines
(parsers) on the BPEL.

Common set or Core Concepts. Because each
aspect of a Business Process (Orchestration and
Choreography) needs specialized extensions for its
expression, the BPEL provides a set of common
XML elements for the core concepts required by
both the external (abstract) and internal (executable)
views of a Business Process.
Control Behaviour. BPEL provides two control
regimes each inherited from its ancestors WSFL and
XLANG: Hierarchical (a characteristic of XML) and
Flow-based (a characteristic of Flowcharts).
Data Handling. The BPEL provides a limited set of
data manipulation functions that are needed to
define process-relevant data and control flow.
Advanced data manipulation should be kept outside
the process and implemented as a specific
implementation’s extensions or as invoked Web
Services.
Properties and Correlation. BPEL defines a
mechanism for identification of process instances.
That mechanism is based on the data of partners’
messages and can keep track of exchanged messages
belonging or referencing to the same instance of the
process (state-full communication).
Lifecycle . Support for implicit creation and
termination of process instances is the basic
lifecycle mechanism. When a message arrived, a
process created and when the process reaches its
terminal activities then it terminates.
Long-Running Transaction Model. BPEL defines
a long-running transaction model that is based on
compensation techniques and an adaptation of the
Sagas and open nested transaction mechanism for
processes.
Modularisation. A BPEL Business Process is itself
expressed as a Web Service. So a Business Process
can invoke other Business Processes or be used by
them.
Composition with other Web Services
Functionality. BPEL relies on compatible Web
Services standards and standards proposals. If a
needed standard does not exist then it is developed
for the needs of BPEL as part of the language or as a
different specification.

2.1.2 Features and Limitations
As noticed, BPEL is the only language today that
supports both Orchestration and Choreography of
Web Services. Indeed it seems to win the race for
standardisation and global acceptance against other
competitive protocols. The main advanced features
of the language are:
• Support of State-full Conversations. With the

correlation mechanism of BPEL a process
instance can be identified from parts of the data

of the messages it handles. The correlation
mechanism is responsible in deciding if an
incoming message should create a new process
instance or if it is a response to a previously
started instance.

• Managing of Exceptions and Transactions
Integrity. The fault handlers of the BPEL allow
the catching of runtime errors and their handling.
Also the adoption of compensating transactions
makes possible the notion of long-running
transactions.

• Composition of Web Services. Each BPEL
process is expressed as a Web Service. In that
way a process can invoke other processes and
can also be invoked from other processes [8].

• Rich collection of Activities. BPEL provides a
rich collection of activities for the execution of
many actions. It provides XML elements for
Web Services invocation and receive-reply, flow
decision points, loops, time and message triggers
of actions, data handling and messages inquiry.

• Incorporation of standard XML Protocols. A
BPEL process defines itself and its
communication interface with the partners using
the WSDL.

Even though BPEL is the most promising and
industry-adopted Web Services Orchestration and
Choreography initiative today, it has also limitations
and weaknesses with the most important being the
following:
• Complexity. Even for modeling a simple process,

the BPEL definition is extremely large and
complex. Advanced workflow patterns are either
very difficult and complicated or practically
impossible to be implemented because of the
resulting complexity of the produced process and
the undocumented behavior of some complex
flow structures.

• Not clear semantic. The semantic of BPEL for
advanced construct is not always clear. There are
semantic gaps and the result is not implicit
predictable [8].

• Overlapped Constructs. Lack of Orthogonality is
one of the most serious drawbacks of BPEL.
There are many interleaved constructs and
attributes of the language. Also some of them
must be replicated leading to semantic
redundancy.

• Lack of data transformation and manipulation
capability. The lack of data handling
functionality like integers and float numbers
arithmetic and basic strings manipulation, adds
more complexity to the Business Process. Instead
of providing this basic functionality, BPEL

forces the designers of a business process either
to implement and invoke Web Services, which
will provide the necessary data handling
functions [7] or to use the data manipulation
capabilities of the XPath standard with its
difficulties and restrictions [8].

• Supports only automatic fault handling. When a
fault occurs, the BPEL engine terminates the
process. The language provides only the
capability of the declaration of some actions to
be performed before the process instance
terminates. But in the real business world it does
not happen that way. It should be possible to let a
human actor to decide what should happen after
the occurring of an error and if the process
should be terminated or not.

• Lack of time-out and fault-handling in <invoke>
activities. There is no provision for processes
waiting to invoke a temporary not responding
Web Service. Indeed, is not even possible to
assign a fault handler for specific <invoke>
constructs [8].

• No direct support for fundamental Workflow
Patterns. Fundamental Workflow Patterns like
Multi-Merge, Discriminator, Arbitrary Cycles,
Interleaved Parallel Routing, Milestone, Multiple
Instances with Priori Runtime Knowledge, and
Multiple Instances without Priori Runtime
Knowledge are not directly supported by BPEL
or are very difficult and error-prone to be
implemented [8].

• No direct support for all types of Asynchronous
Communication [8]. The Publish/Subscribe and
Broadcast types of asynchronous communication
are not direct supported by BPEL.

• Violation of XML Syntax and Conventional
Rules. The BPEL specification allows theoretical
use of the character ‘<’ in expressions as
relational operator [8], but according to the XML
Specification this character is strictly illegal .

• Dependency on no-standard Protocols. BPEL
depends on the non standard WS-Addressing
protocol for addressing. Indeed BPEL adds a
non-standard extension to WSDL in order to
define essential structures.

3 Development methodology
The findings of the evaluation of the BPEL and
existing design tools formed the basis of the goals to
be accomplished with the development of the
C.O.S.M.O.S. Environment. The C.O.S.M.O.S.
Environment is an application for the design and
creation of Business Processes based on the BPEL
specification.

During the development of the prototype of the
environment some problems and difficulties were
recognized. The first one was the difficulty in
maintaining the consistency between the UML Class
Diagrams and the Java Code. Because the round-trip
engineering is not supported, a lot of time is wasted
in every change of the design or the code. Another
problem is the amount of time for the analysis and
design of the software application before the actual
code writing.

Current design methodologies require a lot of
diagrams and when the design of the implementation
begins, the good knowledge of the implementation
programming language and its features is necessary.
Furthermore in design methodologies there is no
clear distinction between analysis and design phases
when the diagrams are produced. The same analysis
diagrams become gradually the design diagrams.

Today’s well known software development
methodologies are trying to address and solve some
or all of the above problems emphasizing in some
direction. For this reason the C.O.S.M.O.S.
Environment developed with a different
methodology, which took into account the best
practices of the existing well-known methodologies.
This methodology named “C.O.S.M.O.S. Software
Development Process” or “C-SDP”.

3.1 The C.O.S.M.O.S. Software Development
Process (C-SDP)
The principal idea behind C-SDP is that end-user
applications need and use some fundamental
services hidden to the user which are responsible for
communicating with the lower services provided by
a platform, environment, network or operating
system.

C-SDP considers that a software application can
be conceptually approached as a combination of the
following layers (Fig.3):

Fig., 3 Software Applications Conceptual Architecture

• Context of Use. Describes the interface of the
application and its semantics. How, where, from

whom and why, the application will be used. An
application may communicate directly with other
applications or interact with humans. The
knowledge domain in which the application is
used and the target group, are also parts of the
context of use.

• Application Services. Each application provides
actually some services to its users. These high
level services compose the application services
layer and usually are provided by collaborating
software components.

• Fundamental Services & Persistent Data
Structures. This layer consists of the general,
low level and reusable software services used by
the above layers in addition to the data structures
used by the application services. The
fundamental services are reusable classes and
wrappers of persistent data structures.

• Foundation. Is the base on which the application
is build. It is the underlying, operating system,
framework, platform, libraries, network, and
hardware. The services of this layer are the
building blocks of the above layer.

The main advantage of the C-SDP is that even
though the requirements of a software application
are not yet fully specified and documented in the
early stage, it is possible for the engineers to work in
parallel on the different layers of the application.
The activities of the C-SDP, which were used in the
development of the C.O.S.M.O.S. Environment, are
illustrated in Fig.4.

Fig.4, C-SDP Activities

4 The C.O.S.M.O.S. Environment
The goal of the C.O.S.M.O.S. Environment is to
help its user to design and create an executable
Business Process. The application should provide a
complete environment that would allow the user to
create, design, code, verify and deploy a Business
Process based on the BPEL specification.

Since it is difficult to address the needs of
different categories of users like Managers and
Developers, C.O.S.M.O.S. Environment, in respect
of the different levels and areas of knowledge of its
users, uses two “views”: The Manager’s Perspective
and the Developer’s Perspective. Each one provides
the services needed for each category of users. The
first one is a visual design environment with drag n’
drop capability of the activities of a process, and the
second one provides an XML editor for BPEL
coding.

In addition the application should be as simple as
could be without unnecessary extra functionalities
that could confuse the users. The spirit of simplicity
and formality influenced the requirements of the
application.

4.1 Specification and System Architecture
The specification of the application services led to
the required components and the architecture of the
C.O.S.M.O.S. Environment. The application is
based on a layered and components-based
architecture (Fig.5), which enabled flexibility for
future improvements and addition of new
components or replacement of the existing.

Fig. 5, C.O.S.M.O.S. Environment Components Diagram

The main components of the application are:
• Application Framework . Bound and controlled

the components of the application. It is also
responsible for the graphical user interface (GUI)
of the application.

• Workflow Designer. Provides visual
representation of a Business Process as a
Flowchart and enables the user to create and
design business processes.

• XML Workflow Editor. An XML Editor that
supports XML Workflow Design Languages.
Providing code coloring, indentation and a code
assistant specific to the implemented workflow
language. Currently only the BPEL language is
supported.

• Workflow Validator. Validates the produced
business process. It is based on the XML
Schema of the implemented workflow language.

• Workflow Language . Provides the actual
implementation of the used Workflow Language.
Currently only the BPEL language is
implemented.

• FTP Manager. It is responsible for the
uploading of files into an FTP server.

• Web Services Archive. Provides an interface for
administering libraries of ready to use Web
Services.

• XML Database Manager. Provides an interface
for manipulating data, stored in XML Databases.

5. Conclusion & future work
With C.O.S.M.O.S. Environment, Managers and
Developers can create or change their Business
Processes using a friendly and easy to learn
environment. C.O.S.M.O.S. Environment enables
its users, to design an executable Business Process,
create a new one from available templates, and
upload them to a BPEL engine for execution.
Managers can work on a visual environment with
drag n’ drop functionality producing a flowchart
which represents a workflow or business process of
their company. Developers can use an XML editor
for the coding of BPEL processes and the creation
of more advanced workflows.

Business Process Design based on Web Services,
and the Web Services Orchestration / Choreography
are exciting areas for challenging and innovative
research. The ambition of C.O.S.M.O.S.
environment is to become the foundation of further
research in this and relative areas.

Ongoing research in the C.O.S.M.O.S.
Environment includes the performance
improvement of existing components and inclusion
of new functionalities. The vision is that
C.O.S.M.O.S. Environment along with C-SDP
would become the starting point of the research on
the design and development of a new processes
framework for Web Services that would incorporate
a new XML Workflow Language, the C.O.S.M.O.S.
Workflow Language, which should overcome the
limitations and the weaknesses of the today’s
implementations along with an Execution Engine of

this language with monitoring, security and quality
of service guarantee mechanisms.

References:
[1] Nagappan, R., Skoczylas, R. & Sriganesh, R.

P., Developing Java Web Services: Architecting
and Developing Secure Web Services Using
Java, Wiley Publishing, 2002.

[2] Langdon, C. S. The State of Web Services,
IEEE Computer, Vol. 36, No 7, 2003, pp. 93-
94.

[3] Peltzer, D., XML Language Mechanics and
Applications, Addison Wesley, 2003.

[4] Chung, J. Y., Lin, K. J. & Mathieu, R. G. Web
Services Computing: Advancing Software
Interoperability. IEEE Computer, Vol. 36, No
10, 2003, pp. 35-37.

[5] Turner M., Budgen D. & Brereton P. Turning
Software into a Service, IEEE Computer, Vol.
36, No 10, 2003, pp. 38-44.

[6] Peltz, C. Web Services Orchestration and
Choreography. IEEE Computer, Vol. 36, No
10, 2003, pp. 46-52.

[7] Frank Laymann, Dieter Roller & Satish Thatte,
Goals of the BPEL4WS Specification, 2003.

[8] BEA, IBM, Microsoft, SAP AG & Siebel
Systems, Business Process Execution Language
for Web Services Version 1.1, May 2003.

[9] P. Wohed et al., Analysis of Web Services
Composition Languages: The Case of
BPEL4WS, Springer-Verlag, 2003.

