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Abstract: -This paper presents different approaches of microwave cavity applicators modeling using neural 
networks. These approaches are developed at the laboratory for Microwave Technique at the Faculty of 
Electronic Engineering - Niš. First, a model of loaded microwave cylindrical metal cavity based on multilayer 
perceptron neural network (MLP) is introduced. Then, the method for efficiency improvement (reducing the 
number of training samples required for neural network training) of proposed MLP models is developed. This 
method is based on indirect incorporation of the existing knowledge from problem domain into the neural 
network. This knowledge is defined by approximate-empirical cavity model. Finally, high efficient neural 
models of microwave cylindrical metal cavity with directly incorporated knowledge (hybrid empirical - neural 
model and KBNN -knowledge based neural network model) are presented. 
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1   Introduction  
     The intense development of microwave technique 
in the last decades has lead to widespread application 
of microwave applicators in the science, medicine, and 
in industry. In most cases, these applicators have a 
form of the cylindrical metallic cavities with various 
cross-sections (circular, rectangular, elliptical, etc). 
Microwave cavities loaded by homogeneous dielectric 
layers have wide range of applications in different 
microwave systems. They also have a special 
application in the processes of dielectric material 
heating and drying by microwave energy. In order to 
manufacture an efficient cavity, it is necessary to know 
all the types of oscillations that may appear in it and 
what are the resonant frequencies [1,2]. 
     A usual approach for theoretical analysis of the 
cylindrical metallic cavities is based on the application 
of the transverse resonance method (TRM) [3]. The 
resonant frequencies are determined from the 
transcendental characteristic equation. To calculate the 
resonant frequencies, an appropriate numerical 
technique and an efficient procedure for mode 
identification (especially in the case of a multilayer 
load) [3] are needed. Software implementation of this 
problem is hardware and time consuming which is 
main disadvantage of this approach. 
     The basic common disadvantage of all other 
numerical techniques which can be applied in cavity 
modeling (TLM, FDTD, etc) is that they have high 
demands concerning the hardware resources necessary 
for their software implementation [1,2,4]. The software 

implementation itself might be very complicated and 
faced with many difficulties. Also the time needed for 
numerical calculation when using a detailed 
electromagnetic (EM) model could be unacceptably 
long. 
     In order to avoid solving of a number of time-
consuming complexes electromagnetic equations 
needed for numerical approaches an original 
approximate approach for cylindrical metallic cavities 
modeling is presented in [5]. This approach is based on 
a huge analytical and semi-empirical research. It 
avoids any kind of complicated numerical calculation 
in order to give fast respond. The main disadvantage of 
this model is that it can only be applied only when 
there is no need of high accuracy in modeling. 
     Good alternative for overcoming all these problems 
is modeling cavities using an artificial neural network 
[4,6] Neural network model in these cases can be fast 
as approximate model and accurate as detailed EM 
models. 
 
 2 Knowledge about Cavity Resonant 
Frequency 

     A number of different TM/TEmnp modes can be 
excited in a cylindrical metallic cavity loaded by 
homogeneous dielectric layer placed at the cavity 
bottom (Fig.1). Investigations conducted in reference 
[3] have shown that the resonant frequency fr of 
excited mode in such cavity with constant dimensions 



depends on the relative dielectric permittivity εr and 
filling factor th (th = t/h, where t is thickness of 
dielectric layer and h is height of the cavity) 

 ),( rhr tff ε=  (1) 

     Using short-circuit boundary (electric wall) in a 
interface plane between dielectric slab and air, from 
the condition of resonance applied separately in air and 
dielectric part of the cavity, appropriate expressions 
for resonant frequency calculation in these regions can 
be easily derived 
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where: fc0 = ckc/(2π) represents the cutoff frequency of 
a waveguide with the same cross-section as cavity and 
filled with air, while kc is a constant that depends on 
mode of oscillation and waveguide cross-section shape 
and dimensions; f0 = c/(2h); and integers l and k are the 
number of half waves of standing wave for electric 
field in corresponding part of the cavity [5]. For the 
cavity of rectangular cross-section with dimension a×b 
for TM/TEmnp modes constant kc is 
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while for the cavity of circular cross-section with 
radius r, constant kc is 
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where xmn is n-th zero of the Bessel function of the first 
kind of order m for TMmnp modes and n-th zero of the 
derivation of the same function for TEmnp modes [2]. 
     Applying open-circuit boundary (magnetic wall) in 
the interface plane between dielectric and air, from 
anti-resonant condition in air and dielectric part of the 
cavity, expressions for anti-resonant frequency 
calculation in these parts can be found as 
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Let note characteristic point of considered TM/TEmnp 
mode family (m=const, n=const) in th - fr plane as 
RRk

l(εr) which represents a crossing point of k-th 
resonant curve in dielectric part of the cavity (3) and l-
th resonant curve in air part of the cavity (2), and 
characteristic point AAk

l(εr) as a crossing point of k-th 

anti-resonant curve in dielectric part of the cavity (7) 
and l-th anti-resonant curve in air part of the cavity (6) 
loaded with dielectric relative permittivity εr (Fig. 2). 
Detail analysis of cylindrical metallic cavities in 
reference [5] has shown that resonant frequency 
curves, for considered TM/TEmnp mode excited in such 
cavities, are approaching either resonant or anti-
resonant curves, passing though characteristic points 
with the following order: AA1

p, RR1
(p-1), AA2

(p-1), 
RR2

(p-2),..., AAp
min(l)+1, RRp

min(l) . The characteristic 
points are easily found from Eqs. (2), (3), (6) and (7) 
for known relative permittivity εr. The fact that these 
points describe the behavior of resonant frequency 
curves (mode tuning behavior) and that they are 
determined directly by resonant and anti-resonant 
frequency functions in air and dielectric part of the 

 
Fig. 1. Microwave cylindrical metallic cavity with (a) 

circular (b) rectangular cross-section loaded by 
dielectric layer of thickness t placed at the cavity 

bottom 

Fig. 2. Family of the resonant frequencies for TM11p 
mod obtained using TRM for the cylindrical metallic 

cavity with circular cross-section (r = 7 cm and 
h=14.24)  loaded with water (εr = 80). 

- - -  resonant curves (monotonous increasing in air 
part and monotonous. decreasing in dielectric part of 

the cavity) 
⋅ ⋅ ⋅ anti-resonant curves (monotonous increasing in air 
part and monotonous. decreasing in dielectric part of 

the cavity) 



cavity, given in analytical form, represents a partial 
knowledge from the problem domain implemented in 
structure of knowledge based neural models discussed 
in section 5. 
 
 3 Neural Models for Loaded Microwave 
Cavities Based on MLP Network 
     Multilayer perceptron (MLP) neural network is 
high-parallel and high-adaptive feed-forward structure 
that is consisted of mutually connected neurons with 
nonlinear activation functions in hidden layers [4,6,7]. 
Researching of MLP application in microwave 
technique has showed that this network is able to 
approximate highly nonlinear functions with 
satisfactory accuracy and high level of generalization. 
Using this structure there is no need of knowledge for 
the explicit functional connection between the output 
and input parameters. Namely the beginning of the 
researching concerning the neural network application 
in microwave cavity’s modeling was based on MLP 
neural model [8,9,10] 
     According to the equation (1), MLP network that 
models the cavity will give the resonant frequency fr at 
the output, while at the input will have variable 
parameters of the dielectric slab: the filling factor th, 
and relative permittivity εr.   The neural model is given 
by y=y(x,w). Where w is a connection weight matrix 
among neurons [4,6,7], x=[th, εr]T is the input vector, 
and output vector is y=[fr]. The architecture of the 
corresponding MLP model is presented in Fig.3. The 
general symbol of this type of MLP neural model is 
MLPH-N1-N2-...-NH , where H is the number of hidden 
layers, and Ni is the number of neurons in the i-th 
hidden layer. Activation functions of the hidden layers 
are sigmoid [6], while the output layer has linear 
activation function.  
     In [8] this MLP models the resonant frequency of 
the experimental cylindrical metallic cavity with 
circular cross-section with dimensions r=7 cm and 
h=14.24, for different TM/TEmnp modes in the range of 
input parameters: 0 ≤ t/h ≤ 0.1 and 2 ≤ εr ≤ 82. 
Training samples, testing samples, and referent curves 
during the simulations are generated using the 
transverse resonance method. Training samples are 
uniformly distributed in the input space. Neural 
network training is performed with different number of 
training samples in order to investigate its influence on 
the modeling accuracy. It is concluded that for 
satisfactory MLP model accuracy there is a need of 
more than 1000 uniformly distributed samples [8]. 
 
 4. Method for MLP model efficiency 
improving  
     Because MLP is getting all the information from 
the training samples it is necessary a large number of 
input samples to be generated. This could be a difficult 

task because they should be generated using long time 
numerical method (transverse resonance method) or by 
complex experimental measurements. Also a large 
number of training samples might cause a long time 
necessary for MLP training. One way to avoid this 
problem is to decrease the number of training samples. 
This could be done by appropriate non-uniform 
distribution of the training samples on the input space, 
according to the behavior of the resonant frequencies 
in th-εr space [9]. This procedure is based on the fact 
that the dynamics of resonant frequency’s changes is 
not same everywhere in the two-dimensional input 
space and it is determined by characteristic points 
defined in approximate model [5]. Where the 
dynamics is larger, the number of training samples is 
larger, and where it is smaller, a smaller number of 
training samples are picked. In this paper for training 
samples generating a new modification of the 
distribution presented in [9] is used. For given εr, the 
values which correspond to the characteristic points 
AA and RR of the modeled TM/TEmnp mode, to one 
intermediate added point between them, as well as to 
the boundary points (for th=0 and th=0.2) are used for 
input parameter th.  Values of εr are generated in the 
following way 

 9,...,2,1,1 2 =+= iiriε  (8) 
 
 5. Knowledge based neural models 
     Previously exposed technique for MLP efficiency 
improvement provides a satisfactory accuracy for 
network training while using a smaller number of 
training samples (in researching [9,10] the number of 
training samples was decreased from about 800-1200 
to 300-500 samples for TM/TE11p 1≤p≤5 modes). But 
in the basis there is still the black box-principle for 
modeling, where MLP is learning only from the input 
data. The existing empirical knowledge about the 

 
Fig. 3. MLP neural model for cylindrical metallic 

cavity with fixed dimensions and dielectric layer at the 
bottom 



problem is indirectly presented to the MLP trough the 
training samples and not by its direct incorporation in 
the neural model. The main goal of performed 
investigation was steered to the realization of a model 
based on the knowledge. This model will be able to 
incorporate the knowledge about the cavity in itself in 
more direct way. In this way a higher accuracy might 
be achieved using less samples in training. For this 
model two approaches are used: 
• Approach that uses hybrid neural-empirical model 

(HEN) [4,10] 
• Approach that uses knowledge based neural network 

(KBNN) [7] 
     The first approach is a transition to a fully neural 
approach and uses the integration of the existing 
approximate model [5] as empirical knowledge holder 
and MLP network. The basic idea in this approach is 
that the empirical model with corresponding 
connection to the neural network provides higher 
generalization and extrapolation capabilities of the 
network [4]. This is achieved by presenting extra 
information about the problem at the input of the 
network. According to that, HEN model is developed 
for loaded microwave cavity whose architecture is 
presented in Fig.4. Approximate model determines the 
resonant frequency fr

e in the following way: in the first 
step for given mode and given εr, according to section 
2, determines AA and RR characteristic points; in the 
second step the resonant frequency between the 
characteristic points is approximated with spline 
function whose parameters are determined empirically 
according to [5]. The output from the approximate 
model ff

e is brought to MLP as additional input. 
General symbol for this HEN model is 
HENH-N1-…-Nl-…-NH where H is the total number of 
hidden layers and Ni is the number of neurons in the 
i-th hidden layer. This model is applied for TM112 
mode resonant frequency calculation for experimental 
cylindrical metallic cavity with circular cross-section 
(with dimensions r=7 cm and h=14.24) in the wider 
range of input parameters (0 ≤ t/h ≤ 0.2 i 2 ≤ εr ≤ 82). 
A training set of 82 samples has been obtained by the 
non-uniform distribution (8). In order to obtain a 
model as good as possible, training of various HEN 
models is done, where 1 ≤ H ≤ 3, and 1 ≤ Nl ≤ 30, 
using the same training set. Levenberg Marquardt's 
training algorithm [4] with prescribed error value Ec = 
10-4 is chosen. For comparison the same training set 
was used for different MLPH-N1-…-Nl-…-NH models. 
     The both HEN and MLP model have been tested 
using testing data set of 60 uniformly distributed 
samples (not used in the training process). The testing 
results for eight HEN models and for eight MLP 
models with the lowest average test error (ATE) are 
shown in Table 1 and Table 2, respectively. It can be 
seen that the HEN models show significantly lower 

ATE as well as worst case error (WCE) compared to 
MLP model. 
     Two models are selected for the TM112 mode 
simulation: one from the HEN group (HEN4-12-11) 
and one from the MLP group (MLP2-12-12). A three-
dimensional (3D) presentation of the resonant 
frequency dependence versus the cavity filling factor 
and relative permittivity obtained by these models is 
presented in Fig. 6.a (HEN4-12-11) and in Fig. 6.b 
(MLP2-12-11). The comparison of these 3D plots with 
the referent surface obtained using transverse 
resonance method (shown in Fig. 6.c), shows that the 
surface obtained by HEN model is more similar to the 
referent surface than the surface obtained by MLP 
model. Moreover the surface obtained by MLP model 
in some areas is so irregular and largely deviates from 
referent one. The reason for this is that the number of 
training samples is not sufficient for MLP training. 
Using 10000 points calculation for this surface, 
transverse resonance method needs time between 20 
and 30 hours (Pentium III 450 MHz, 128 MB RAM), 
while the HEN model needs 2 to 3 minutes (MLP 
model needs only 5 seconds). 
     The second approach is using the whole advantages 
of the first one, while eliminating the connection to the 
empirical model as independent part that brings 
limitations in the definition range, simulation speed, 
and software implementation. The realization of 
specialized neural network architecture is the basic 
idea in this approach. This structure will be appropriate 
to the cavity’s model in the sense that it incorporates 
the existing relations and functional dependences 
investigated with approximate model (mode tuning 
behavior discussed in section 2). According to this a 
new Knowledge Based Neural (KBN) model is 
developed and it is presented in Fig.5. It has the ability 
to incorporate the functional dependences of resonant 
and anti-resonant frequencies in the air and dielectric 
part of the cavity using the additional specialized 
knowledge based neurons (KN) [7]. This incorporation 
is done through the transfer functions of the 
knowledge neurons. The transfer function of the KN 
neurons is a general fitness form of relations (2) and 
(6), or general fitness form of relations (3) and (7). 
According that the first type of KN neurons has the 
output: 
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while the second type of neurons has the output:  
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where Za and Zd are number of KN neurons of first and 
second type respectively. Parameters w1,i

a, w2,i
a, w1,j

d 
and w2,j

d are internal weights of KB neuron. These 
weights are joined to the weight matrix w and they 



also change trough the iterative process of network 
training. Neurons in the hidden layers have sigmoid 
transfer function [6]. At the input they receive the 
outputs from all neurons in the previous hidden layer 
and the outputs from all KB neurons. The output layer 
has one linear neuron that corresponds to the output fr. 
The general symbol of this neural model is 
KBNH-Z-N1-…-Nl-…-NH  where H is the number of 
hidden layers, Z is the total number of knowledge 
based neurons, and Ni is the number of neurons in the 
i-th hidden layer. The training and testing was 
performed for various KBN models, (where 1 ≤ H ≤ 3, 
1 ≤ Z ≤ 6 and 1 ≤ Nl ≤ 30) under the same conditions 
as for HEN model. Only symmetrical structures were 
considered where the number of KN neurons of first 
type is equal to the number of the neurons of second 
type (Za=Zd=Z/2). Testing results of KBN model are 
shown in Table 3. It can be seen that they have ATE 
and WCE close to HEN models. 
     3D presentation of the resonant frequency 
dependence versus the cavity filling factor and relative 
permittivity obtained by KBN3-4-16-16-16 model is 
presented in Fig. 6.d. This surface is notably closer to 
the referent one compared to that for MLP model. This 
is similarly as for HEN model. Also the elimination of 
empirical model as knowledge holder and using the 
fully neural architecture provides higher simulation 
speed: KBN model for previously mentioned Pentium 
configuration needs less than 7 seconds for surface 
generation, which is much faster than HEN model. 
Moreover, KBN model provides easier increase of the 
number of input parameters compared to HEN model. 
The inputs of HEN model are determined with 
empirical model and it is more convenient for general 
model building. 
 
 6. Conclusions 
     EM modeling of microwave cavities is facing with 
many limitations. Good alternative is to use neural 
network modeling. MLP model is easy to be 
developed, has high simulation speed, but it needs a 
large number of training samples. The number of 
training samples could be decreased by their non-
uniform distribution in the input space, which will 
correspond to the existing knowledge about the 
resonant frequencies gained from the approximate 
model. Further decrease and modeling efficiency 
improvement could be achieved using direct 
incorporation of the existing knowledge with the HEN 
and KBN model. Both models give a high accuracy 
even when the number of training samples is too small 
for satisfactory training of MLP model (smaller than 
100 samples for the given experimental cavity). KBN 
model is advantageous compared to HEN model 
because it eliminates the external empirical model. The 
empirical model causes lower speeds and brings 

 
Figure 4. The architecture of HEN model 

 
Figure 5. The architecture of KBN model 

Table 1. The testing results for eight HEN models 
HEN model WCE [%] AE [%] 

HEN2-12-10 3.38 0.41 
HEN2-14-10 4.05 0.49 
HEN2-10-10 4.81 0.50 
HEN2-12-9 4.91 0.43 
HEN3-12-10-10 5.06 0.54 
HEN2-11-10 5.48 0.60 
HEN2-18-18 5.55 0.61 
HEN2-15-9 7.27 0.69 

Table 2. The testing results for eight MLP models 
MLP model WCE [%] AE [%] 

MLP2-12-12 8.96 1.09 
MLP3-10-10-10 7.50 1.12 
MLP2-8-8 9.74 1.11 
MLP2-14-7 7.67 1.14 
MLP2-11-7 10.28 1.22 
MLP2-10-8 9.27 1.23 
MLP2-12-8-4 11.03 1.28 
MLP2-10-10 15.26 1.37 

Table3. The testing results for eight KBN models 
KBN model WCE [%] AE  

KBN3-4-16-16-16 2.03 0.40 
KBN2-2-16-16 2.31 0.37 
KBN2-4-14-7 2.06 0.39 
KBN2-2-12-12 2.43 0.49 
KBN3-2-12-12-12 3.07 0.42 
KBN2-4-16-16 3.27 0.51 
KBN3-4-10-10-10 2.63 0.60 
KBN3-2-10-10-10 3.50 0.55 



different limitations, especially for increasing the 
number of input parameters. 
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Fig. 6 Resonant frequency of TM112 mode vs. cavity filling factor and relative dielectric permittivity obtained by 
using (a) HEN, (b) MLP model, (c) TRM and (d) KBN model 


