A Novel Non-Block Synchronous Checkpointing 
Scheme for Distributed Systems

B. Gupta and S. Rahimi, 
Department of Computer Science
Southern Illinois University

Carbondale, IL 62901, USA
Abstract: - In this paper, we have proposed a new approach toward designing a simple and efficient non-block synchronous checkpointing algorithm for distributed systems. In general, such algorithms require all processes to take checkpoints, even though some of them may not be necessary. In the present work, if a process since its last checkpoint has sent some message(s), but none of which has yet been received, the process does not take a checkpoint. It reduces the number of checkpoints to be taken. This approach offers advantage particularly in case of mobile computing environment where both non-block checkpointing and reduction in the number of checkpoints help in the efficient use of the limited resources of mobile computing environment.

Keywords: - Distributed Systems, Synchronous Checkpointing, Non-block, Recovery.

 1   Introduction
Checkpointing / rollback-recovery strategy has been an attractive approach for providing fault-tolerance to distributed applications [1-6]. A checkpoint is a snapshot of the local state of a process, saved on local nonvolatile storage to survive process failures. A global checkpoint of an n-process distributed system consists of n checkpoints (local) such that each of these n checkpoints corresponds uniquely to one of the n processes. A global checkpoint M is defined as a consistent global checkpoint if no message is sent after a checkpoint of M and received before another checkpoint of M [1]. The checkpoints belonging to a consistent global checkpoint are called globally consistent checkpoints (GCCs). 

     There are two fundamental approaches for checkpointing and recovery. One is the asynchronous approach and the other one is the synchronous approach [2].  In the asynchronous approach, processes take their checkpoints independently. So, taking checkpoints is very simple as there is no coordination needed among the processes while taking the checkpoints. After a failure occurs, a procedure for rollback-recovery attempts to build a consistent global checkpoint [2]. However, in this approach because of the absence of any coordination among the processes there may not exist a recent consistent global checkpoint which may cause a rollback of the computation. This is known as domino effect. In the worst case of the domino effect, after the system recovers from a failure all processes may have to rollback to their respective initial states to restart their computation again. 
      Synchronous check pointing approach assumes that a single process other than the application processes invokes the check pointing algorithm periodically to determine a consistent global checkpoint. This process is known as initiator process. It asks periodically all application processes to take checkpoints in a coordinated way. The coordination is done in a way so that the checkpoints taken by the application processes always form a consistent global checkpoint of the system. This coordination is actually achieved through the exchange of additional (control) messages. It causes some delay (known as synchronization delay) during normal operation. This is the main drawback of this method. However, the main advantage is that the set of the checkpoints taken periodically by the different processes always represents a consistent global checkpoint. So, after the system recovers from a failure, each process knows where to rollback for restarting its computation again. In fact, the restarting state will always be the most recent

[image: image1.wmf]|

 v

.

 

.

 

.

 

 v

 v

|

V

1

-

n

i,

i,1

,0

i

i(recv)

=

consistent global checkpoint. Therefore, recovery is very simple. On the other hand, if failures rarely occur between successive checkpoints, then the synchronous approach places unnecessary burden on the system in the form of additional messages and delay. Hence, compared to the asynchronous    

      In this work, we have presented a non-blocking synchronous check pointing algorithm to determine the GCCs. In this approach application processes are not suspended. There exist some efficient non blocking algorithms [8], [9]; however they require all processes to take checkpoints, even though some of them may not be necessary. In the present work, it is not required that all processes take their checkpoints; if a process since its last checkpoint has sent some message(s), but none of which has yet been received, the process does not take a checkpoint. This has been described in detail later. In this context, it may be noted that there does not exist a non blocking algorithm that generates optimal number of checkpoints [5], [7], [10]. The ideas of non-blocking checkpointing and reduction in the number of checkpoints to be taken, offer advantage particularly in case of mobile computing, because it helps in the efficient use of the limited resources of mobile environment. 
     This paper is organized as follows: in Sections 2 and 3 we have stated the system model and the necessary data structures respectively. In Section 4, we have presented the problem associated with any non-block checkpointing algorithm. It also contains the algorithm. Section 5 draws the conclusion.
2   System Model
The distributed system has the following characteristics [3], [4], [11]: (1) processes do not share memory and communicate via messages sent through channels, (2) channels can loose messages. However, they are made virtually lossless and order of the messages is preserved by some end-to-end transmission protocol, and (3) when a process fails, all other processes are notified of the failure in finite time.

3   Data Structures

The distributed system under consideration consists of n processes. Each process Pi maintains a vector Vi(recv) of length n. The vector indicates if process Pi has received any message from any other process. The vector is shown below:

[image: image9.wmf]
[image: image8.wmf]where vi,j  in Vi(recv) is a boolean variable representing whether process Pi has received any message from process Pj. Initially all entries in Vi(recv) are set to false (F). When process Pi receives a message from process Pj, then Vi(recv)[j] is set to True (T). Consider the system of three processes P0, P1, and P2 as shown in Fig. 1. The vectors V0(recv), V1(recv), and V2(recv) initially have all entries set to false. When process P1 receives the message m1 from P0, it sets V1(recv)[0] to T (True). When process P0 receives the message m2 from P1, it sets V0(recv)[1] to T.  Similarly, the other vectors also are updated.
     We assume that an initiator process (denoted as PI) that runs on one of the processors running the distributed program is responsible for initiating periodically the execution of the checkpointing algorithm. PI sends a message, denoted as Ma, requesting all Pj, 0 ≤ j ≤ n-1 to send to it their respective latest Vj(recv)  vectors. After receiving the vectors Vj(recv)  from all processes  the initiator process PI forms a two dimensional array Vn .

[image: image2.png]Yop Vi
Vg Vi
vio v

ASUIRSH

Yont
Vint
Y, nt

Unt, nl




where the jth row represents Vj(recv), 
[image: image3.wmf]1

-

n

j

0

 

£

£

. The initiator process then computes the column OR-ing to create the following vector.

Vcol = vc0 vc1… vcj … vcn-1
where  vcj  =  column wise OR-ing of the entries of the  jth column of Vn .

Therefore, vcj represents whether any other process has received a message sent by Pj . If vcj = T, it 

means that process Pj has sent some message(s) at least one of which has been already received by some process, say Pk. The initiator process PI then unicasts vcj (= Vc[j] = T) to process Pj. After receiving vcj from PI, process Pj takes a checkpoint since it now knows that at least one of its sent messages has been received. Note that in the proposed algorithm, any process that receives a message from any other process takes a checkpoint. So process Pk takes a checkpoint since its vector Vk(recv)  has at least one True (T) entry. Therefore the message(s) sent by Pj can not be an orphan. In other words this also means that if a process since its last checkpoint has sent some message(s), but none of which has yet been received, the process does not take a checkpoint. This also is the working principle of the proposed algorithm.
[image: image4.png]Vi) = [ FFF] Vi =[FTH Voo =[FTH] Vi = [FTT]
u; ™
B o m m

Vipem=[FF ] Vige =[TFT]

0 — Y
Vi = [ TFF]
Py m3 ms

Vanen=[ FFF]

T L,

B




Fig. 1 A system of three concurrent processes
[image: image5.png]Varen)=[ FFF] Vo =[FTF] Vo =[FTF]
>
B 3 m
m
Vi~ FFF) Vi =[TF
>
0 Vi =[TFF]
|
1 5
Vare)=[ FFF]
5
Vi =[F T

2}




Fig. 2 Described in the text
Example 1: Consider the distributed system of Fig. 2. Suppose at time t the initiator process PI initiates a checkpointing algorithm. It broadcasts the request message  Ma to all processes. In response to this message each process sends its latest Vj(recv) vectors. In this example, P0 sends the vector   [F T T]. Similarly P1 and P2 send there respective vectors [T F T] and [F F F] to the initiator process PI. Since Vo(recv) and V1(recv) have atleast one true (T) entry, so they take checkpoints.
      After receiving all the vectors PI calculates the vector Vcol  which in this case is [T T T]. In this case, even though process P2 did not receive any message still it needs to take a checkpoint otherwise the messages m3 and m5 will become orphan, because P0 and P1 have already taken checkpoints. Observe that P0, P1, and P2 reset their respective vectors to all false entries.
     The main objective of this work is to design a simple scheme that helps the n processes to decide easily whether to take a checkpoint when they receive the message Ma from the initiator process PI. It is especially important for non-blocking approach (Section 4) when a receiving process does not wait for any go-ahead signal from the initiator process to resume its normal computation. In the proposed algorithm, those processes that have received some message(s) since their last checkpoints take checkpointing decision independently. This advantage makes the proposed algorithms simple, fast, and efficient.
4 Problems Associated with Non-blocking Approach
We explain first the problem associated with non-blocking approach. After that we will state a solution. Consider a system of two processes Pi and Pj as shown in Fig. 3. Assume that the initiator process has requested (by issuing the message Ma) the processes to take synchronous checkpoints. Let the request reaches Pi before Pj. Then Pi takes its checkpoint Ci1 because its vector Vi(recv) = [FT] and then sends an application message mi to Pj. Now consider the following scenario.

Suppose at time (T + €), Pj receives mi. Still Pj has not received Ma from the initiator process. So, Pj processes the message. Now the request from PI arrives at Pj. Process Pj finds that its Vj(recv) = [TF]. So it decides to take a checkpoint Cj1. It is shown in Fig. 4.


[image: image6]
Fig. 3 Described in the text
We find that message mi has become orphan due to the checkpoint Cj1. Hence, Ci1and Cj1 cannot be consistent. 

[image: image7]
 Fig. 4 Described in the text
     In general, the rules guiding a process Pj about when to process a received message are stated below. These rules use the idea stated in the two process solution. The underlying assumption used in these two rules is that process Pj has not yet received the request message Ma from the initiator process PI.
Rule 1:  If  process Pj has received already the piggybacked messages <mi, Ni>, ….,<mr, Nr> from some other processes Pi, …. ,Pr, then it delays the processing of only those messages ms, (i ≤ s ≤ r and s ≠ j), for which Ns > Nj , till it receives the message Ma and implements its decision about taking a checkpoint. 

Rule 2: If Pj receives any application message ms* (not piggybacked) from a process Ps, it does not delay the processing of the message ms* provided in Pj ´s queue of waiting messages, there is no application message ms that came from Ps to Pj (before the message ms*) as the piggybacked message, <ms, Ns> with Ns  > Nj . Otherwise, the message ms will be queued for later processing.  
     It is clear that such conditions (above rules) about when to process an application message ensure that no received message in the system can be an orphan. Therefore, a non-block checkpointing algorithm that implements the above two rules will always find a consistent global checkpoint of the system.
     The above discussion leads to the observations stated in the following two Lemmas.

Lemma 1: If a process Pj, receives first a piggybacked application message <mi, Ni = k> from a process Pi such that Ni > Nj and then receives the message Ma from the initiator process PI corresponding to the kth execution of the non-blocking algorithm, the application message mi can not be an orphan if Pj takes its checkpoint first and then it processes the message mi. Same is true for any other message mi* (not piggybacked) that follows the message <mi, Ni = k> prior to the arrival of the message Ma to Pj.
Lemma 2: If a process Pj receives first a piggybacked application message <mi, Ni = k> (such that Ni > Nj) followed by the message Ma corresponding to the kth execution from the initiator process PI and then decides not to take a checkpoint, the application message mi can not be an orphan. Same is true for any other message mi* (not piggybacked) that follows the message <mi, Ni = k> prior to the arrival of the message Ma.
      From the above discussion it is clear that a computing process Pj starts executing its responsibility associated with the non-block synchronous checkpointing algorithm when one of the following two events occurs: (1) Pj  has received the request message Ma from the initiator process, and (2) Pj  has received a piggybacked application message  < mi, Ni>  with Ni > Nj. Therefore, occurrence of the second event means that process Pj tests first if Ni > Nj and finds it true before starting the execution.

      We now present the checkpointing algorithm. Below, we state the responsibilities of the initiator process PI and every process Pj of the system of n processes.

4.1 Algorithm A – A non-blocking approach
Initiator process PI:                                                                    /* it is the kth execution of the algorithm*/
Step 1: 
It asks every process Pj to send its latest Vj(recv) vectors.
Step 2: 
It receives all Vj(recv)  for 0 ≤  j  ≤ n-1

Step 3: 
It computes   Vcol = vc0 vc1… vcj … vcn-1  
Step 4: 
It unicasts vcj to each Pj
Every process Pj executes the following:
Step 1:      if Pj receives Ma
                                            it sends Vj(recv) to PI;

                                 if Vj(recv) has a True (T) entry

                                 Pj takes a checkpoint;

                                 Pj resets all entries of Vj(recv)  to false (F);

                                 Pj resumes its computation;                                              /*Pj finishes its execution*/
                                 else Pj waits to receive vcj;

                                         If vcj = T

                                         Pj takes a checkpoint;                      /*Pj’s sent message(s) has been received*/
                                         Pj resumes computation;

                                         else Pj resumes computation;                                   /*Pj finishes its execution*/
Step 2:     if Pj receives < mi, Ni>                                                                       /* Ni (= k) > Nj  (= k-1) */

               Pj queues until it receives Ma  any such message mi 
                             as well as any message mi* (not piggybacked) that        /* Rules 1 and 2 are applied*/
                             arrives  after < mi, Ni> for later  processing;                                 
                             it receives Ma; It executes Step 1 of its responsibility;
The correctness proof has not been given here because of lack of space.
5   Conclusion

In this work, we have presented a non-blocking synchronous checkpointing approach to determine globally consistent checkpoints. In general, such algorithms require all processes to take checkpoints, even though some of them may not be necessary. In the present work if a process since its last checkpoint has sent some message(s), but none of which has yet been received, the process does not take a checkpoint. It reduces the number of checkpoints to be taken. This approach offers advantage particularly in case of mobile computing environment where both non-block checkpointing and reduction in the number of checkpoints help in the efficient use of the limited resources of mobile computing environment. One noteworthy point is that in the proposed algorithm those processes that have received some message(s) since their last checkpoints take checkpointing decision independently. This advantage makes the proposed algorithm simple, fast, and efficient.
References:
[1] Y-M. Wang., “Consistent Global Checkpoints            that Contain a Given Set of Local  Checkpoints,” IEEE  Transactions on Computers, vol. 46, no.4, pp. 456-468, 1997.
[2] M. Singhal and N. G. Shivaratri, Advanced Concepts in Operating Systems, McGraw-Hill,1994.
[3] R. Koo and S. Toueg, “Checkpointing and Rollback-Recovery for Distributed Systems,” IEEE Transactions on Software Engineering, SE-13, (1), pp. 23-31, 1987. 
[4] S. Venkatesan, T. T-Y. Juang,  and S. Alagar, “Optimistic Crash Recovery without Changing Application Messages,” IEEE Transactions on Parallel and Distributed Systems, vol. 8, no. 3, pp. 263-271, 1997.
[5] G. Cao and M. Singhal, “On Coordinated Checkpointing in Distributed Systems,” IEEE  Transactions on Parallel and Distributed Systems, vol. 9, no.12, pp. 1213-1225. 1998.
[6] D. Manivannan and M. Singhal, “Quasi Synchronous Checkpointing: Models, Characterization, and Classification,” IEEE Transactions on Parallel and Distributed Systems, vol.10, no.7,  pp. 703-713, 1999.
[7] G. Cao and M. Singhal, “Mutable Checkpoints: A New Checkpointing Approach for Mobile Computing Systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 12, no. 2, pp. 157 – 172, 2001.
[8] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The Performance of Consistent Checkpointing,” Proc. 11th Symp. on Reliable Distributed Systems, pp. 86-95, Oct. 1992.
[9] L. M. Silva and J. G. Silva, “Global Checkpointing for Distributed Programs,” Proc. 11th Symp. on Reliable Distributed Systems, pp. 155 – 162, Oct. 1992.
[10] G. Cao and M. Singhal, ”On the Impossibility of Min-Process Non-Blocking Checkpointing and An Efficient Checkpointing Algorithm for Mobile Computing Systems,” Proc. 27th International Conference on Parallel Processing, pp. 37 – 44, Aug. 1998.
[11] P. Jalote, Fault Tolerance in Distributed Systems,Addison-Wesley, (1998).
























� EMBED Equation.3  ���








T





Cj0





Ci0





Ci1








 mi





Pj





Pi





€





€








approach, taking checkpoints is more complex while recovery is much simpler. Observe that the synchronous approach is free of any domino effect.





T





Cj0





Ci0





Ci1





mi





Pj





Pi





Cj1


















































































































































PAGE  
6

_1160412832.unknown

_1160412986.unknown

_1158935344.unknown

