Signal and Image Processing Application Development in the Biomedical Engineering Degree Program

I. KALATZIS, N. PILIOURAS, P. GEORGIADIS, E. ATHANASIADIS, C. HIKIMTZIS, E. TRAPEZANIDIS, E. VENTOURAS AND D. CAVOURAS
Department of Medical Instrumentation Technology
Technological Educational Institution of Athens
28, Ag. Spiridonos str., Egaleo, Athens, 12210
GREECE
http://medisp.bme.teiath.gr

Abstract: - A different approach to the digital signal and image processing training is presented. The students are taught a) the theoretical background of signal and image processing, b) how to use it to implement the theoretical examples by developing program applications, and c) to integrate an autonomous application for signal or image processing. Throughout the whole process they obtain useful skills for their further career.

Key-Words: - Signal processing, Image processing, Biomedical engineering education

1 Introduction *

Digital Signal and Image Processing (DSIP) are at the forefront of information technology and they are used in a wide variety of modern electronic and information systems. They are the basis for a growing variety of applications including medical diagnosis, remote sensing, geophysical prospecting, space exploration, molecular biology, microscopy, and machine vision. For these reasons DSIP courses are now days included in the vast majority of the engineering training programs at different Universities and Institutions.

There is a tremendous number of excellent books analyzing the principles of DSIP [1-9] that assist the relevant trainers and help the students to understand the basic DSIP principles. However, DSIP applications on real signals and real images remain a difficult task.

This work presents a different approach to DSIP training of undergraduate students. It is designed to be applied in a Biomedical (BM) engineering degree program and besides the mathematical analysis of the DSIP principles it includes the development of two complete autonomous applications, one for signal and one for image processing in the MATLAB environment [10-13]. Throughout the whole training process, a deeper understanding of the mathematical and physical principles of different DSIP applications is achieved, which will be needed by the students in their future careers during the use, support or even development of similar applications.

2 Methodology

2.1 Teaching Methodology

DSIP training is carried out in two sections (semesters), eight 4-hour lectures each. The first section is focused on Digital Signal Processing (DSP), while the second on Digital Image Processing (DIP). The DSP course precedes the DIP one, since the DIP course requires knowledge gained during the DSP course, as images are approached as two dimensional (2-D) signals. A common methodology is followed for every 4-hour lesson (lecture) for both sections. The schematic representation of the followed methodology, which is described in detail below, is displayed in Fig.1.

2.1.1 Course Methodology

On the beginning of each section the students are provided with a set of real data (medical signals and the source code for data retrieval and display. Also they are provided with the source code for a generic Central Application Graphical Environment (CAGE, sCAGE for DSP, iCAGE for DIP). The CAGE is the core for the application development during the course. In every lesson the CAGE is expanded with the new functions implementing the DSIP algorithms that are developed during the specific lesson. At the end of the course, CAGE comprises a

* Financial support for this work and its dissemination efforts was provided by the project “Upgrading of Undergraduate Curricula of Technological Educational Institution of Athens”, (APPS program - T.E.I. of Athens), financed by the Greek Ministry of Education and the European Union (Greek Operational Programme for Education and Initial Vocational Training -O.P. Education- action: 2.2.2. “Reformation of Undergraduate Studies Programs”).
complete and autonomous application, which can be used for the processing of any type of digital signal or image.

2.1.2 Lesson Methodology
Each lesson is separated in the theoretical section and the laboratory/application section. During the theoretical section the mathematical principles are analyzed and the mathematical formulation of the problem is broken down using examples applied on limited size data (i.e. 4 point signals, 4×4 pixel images).

At the laboratory/application section the students are developing Lesson Applications (LA) that implement the examples they have already been taught during the theoretical section. Initially the students are focused on the algorithm part of the problem, developing LAs for the limited size data in accordance with the theoretical examples. The theoretical examples are also used for the confirmation of the algorithms correctness.

After the algorithm successful development is completed, the LAs are expanded to handle unlimited size data. At this phase the students are concentrated on the flexibility and the speed of the developed algorithms. The development of robust and fast algorithms, which are able to cope with any type of digital signals or images, is requested.

During the next step, the part of the LA code that implements the processing algorithms is isolated and is used to form a number of functions. The trainees are focused on the function robustness and generality. The LA is converted once more so that it can use the formed functions for result confirmation.

Also, at this stage, the existing MATLAB functions are used for result correctness confirmation, where this is applicable.

At the final step, the functions are incorporated into CAGE. For this purpose, CAGE’s menus and results displays are updated to cooperate with the new functions. All the dialogs for entering the required parameters are also developed and incorporated into CAGE.

2.2 DSP course structure
The eight lessons of the DSP course cover a wide variety of DSP subjects. In particular, the lessons are related to the following topics:

- **Basic properties of digital signals**: The digital signal mathematical representation is analyzed, and the basic calculations (addition, subtraction, multiplication and division) of two digital signals are explained.

- **Convolution and correlation in the time domain**: The formulation of calculating the convolution and correlation of two signals is presented. The physical meaning of convolution and correlation is explained and their properties are analyzed.

- **Discrete Fourier Transform (DFT)**: The formulation of the DFT mathematic relations, the development of the relevant software code and the basic properties of DFT are presented. The general understanding of transferring the signal information from the spatial domain to the frequency domain through the DFT and the meaning of the spectral information included in the DFT’s amplitude and phase spectrums are broken down using examples.

- **Convolution and correlation in the frequency domain**: The convolution and correlation of two signals in the frequency domain is analyzed. Examples are used for their calculation and for comparison with the convolution and correlation in the spatial domain.

- **Frequency selection digital filters**: The digital filter development (Ideal, Butterworth, Exponential) is analyzed and their application on signals are presented. The effect of digital filters (Low Pass, High Pass, Band Pass, Band Reject) on the signals is explained using examples.
- **Infinite Impulse Response (IIR) filters I**: The development of IIR filters using the z transform and the differences of filtering in the frequency domain vs. spatial domain is explained. The simplest type of IIR filters, i.e. Direct Form, is analyzed as an example.

- **IIR filters II**: The Cascaded and the Parallel IIR filtering structures are explained in order to make intelligible the comparison between the different types of IIR filters. The advantages and disadvantages of the application on digital signals in relation to the type of the signals are analyzed.

- **Finite impulse response (FIR) filters**: The development of FIR filters (Ideal, Butterworth and Exponential), their application on signals in the spatial domain and the windowing technique for ripple elimination is explained. The effect of FIR filtering and its comparison to filtering a signal in the frequency domain are analyzed using examples. An example of sCAGE application for filtering a signal with added noise using the Butterworth low pass filter is presented in Fig.2.

- **Contrast enhancement – histogram modification techniques**: The histogram modification techniques, used for contrast enhancement, are explained. The Histogram Equalization (HE) and the Cumulative Distribution Function (CDF) techniques are analyzed and their results are compared to the windowing techniques outcome.

- **Time domain image enhancement**: The filtering (masking) methods used for image enhancement in the time domain are explained. The application of smoothing and contrast enhancement masks is analyzed by using examples and the results are compared to the windowing techniques outcome.

- **2-D Discrete Fourier Transform**: The mathematic formulation of the two dimensional Discrete Fourier Transform (2D-DFT) is presented and its principles are explained. Emphasis is given to the understanding of image transformation from the spatial to the frequency domain using examples, as well as the spectral information, which is included in the amplitude and phase spectrums.

- **Frequency domain image enhancement**: The design of zero phase filters (Ideal, Butterworth, Exponential) and their application on images are analyzed. The effect of digital filters (Low Pass, High Pass, Band Pass, Band Reject) on the images as well as on their amplitude spectrum are explained using examples. Comparison between the results of filtering in the spatial and frequency domain is carried out.

- **Image restoration**: The design and application of image degradation models is carried out in order to add artificial noise to diagnostic images. Also, image restoration filter design is explained. Their application and the comparison of their results are analyzed by using examples.

- **Image tomographic reconstruction**: The procedure of tomographic reconstruction of an image is explained. The design and application of

Fig.2. Butterworth low pass filtering

Fig.3. Broken window application
different filters during the reconstruction are analyzed. An example of iCAGE application for applying the Broken Window technique for image enhancement is presented in Fig.3.

3 Conclusion
During the courses the students have the opportunity to compare their own programming results to the existing MATLAB functions. By the end of each session the students are able to design and develop an autonomous & complete application. Students not only come to terms with the theory of DSIP, but furthermore they understand how to use this theoretical background in practice. Students obtain useful knowledge and skills that are very appreciated in their further carrier in this certain field of expertise.

References: