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Abstract:- This paper studies the efficiency of the random search reported by Ru-
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the direction of the descent movement. We report the theoretical results.
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1. Introduction

Stochastic approximation algorithms can
be used in system optimization problems
for which only noisy measurements of
the system are available without know-
ing the gradient of the objective function.
This type of problem can be found in
adaptative control, neural network train-
ing,experimental design, stochastic opti-
mization and many other areas.
The main idea of the stochastic quasigra-
dient methods is to solve a wide class of
optimization problems with a complex na-
ture of objective functions and constraints.
These methods are stochastic algorithmic
procedures for solving general constrained
problems with nondifferentiable, noncon-
vex functions.

For stochastic programming problems,
these techniques generalize the well known
stochastic approximation method for un-
constrained optimization of the expecta-
tion of a random function to problems in-
volving general contraints.

Consider the general stochastic program-
ming problem

MinimizeF0(x) = E [f0(x, ω)], (1)

Subject to x ∈ S ⊂ Rn, where

S = {x | fi(x, ω) ≤ 0, i = 1, . . . ,m}, (2)

E is the operation of mathematical expec-
tation with respect of some probability –
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space (Ω,A,P), and ω ∈ Ω.
The more trouble on solving the problem
(1) to (2) is that, it is only feasible to cal-
culate the exact values of the functions

Fi(x) = E [fi(x, ω)] =

∫
fi(x, ω)P(dω),

i = 0, . . . ,m

in exceptional cases for special types of
probability measures P(ω).
If the functions Fi(x) have uniformly
bounded second derivatives at x ∈ {xs}∞s=0

then for the random vectors ξi(s) defined
as (see [3])

n∑

j=1

fi(xs + ∆se
j , ωsj)− fi(xs, ωs0)

∆s
ej , (3)

we would have E[ξi(s) | xs] = Fi(xs) +
bi(s), ‖ bi(s) ‖ ≤ ∆s. Where ej is the unit
vector on the jth axis and ∆s is a positive
constant.
The random sequence xs+1 = xs − ρsξs,
s = 0, 1, . . . converges with probability
1 to the solution of (1) if the following
conditions are satisfied with probability 1.
For the step size: ρs ≥ 0,

∑
s ρs = ∞,∑

s E [ρs ‖ ∆s ‖ +ρ2
s] < ∞. For the quasi-

gradient ξs, E [ξs | xs] = ∇F0(x
s) + o(∆s).

2. The random search

algorithms

In this section we introduce the random
search algorithms for optimization pro-
blems, in which the computing cost of the
random search at a point increases as the
point tends to satisfy appropriate opti-
mality conditions. The algorithms progress
faster beginning from initial conditions far

away from an optimal or suboptimal point,
and they gain precision with expense of
efficiency as such a point is approached.
The algorithms start at some x0 ∈ S, and
they generate a sequence x0, x1, . . . , ∈ S.
These are descent algorithms, in the sense
that the sequences F (x0), F (x1) . . . , are
monotone decreasing. They generate xi+1

from xi by random search techniques, using
the sufficient descent principle. This prin-
ciple enables that the algorithms do not
adopt the first point y ∈ Rn found by ran-
dom search satisfying F (y) < F (xi) as xi,
but they rather wait to find a point y for
which F (xi)−F (y) is large by some criteria
[4]. The amount of descent F (xi+1)−F (xi),
like the amount of time the algorithm spent
for the random search at xi, depends on the
desired extent for xi; the less desirable xi,
the larger the descent will tend to be.
Random search techniques have been an
object of research for quite some time. The
concept has been initially introduced by
Anderson [5] and then developed by Ras-
trigin [6]. The idea is to determine a des-
cent direction at random, by using a distri-
bution on the unit sphere around xi, and
then, to find a suitable step size. The step
size is used by minimizing F along the des-
cent direction. This is determined adap-
tively, based on the ratio of successful to
failed attempts (by random searches) to
reduce F . The basic property of this al-
gorithms is that xi reaches a solution of
(1) with probability 1 using a prescribed
tolerance as i → ∞. Thus in descent al-
gorithms, one random search is conduc-
ted at xi to generate xi+1. For the conver-
gence states, the probability of xi satisfy-
ing f(xi) ≤ inf {f(x) | x ∈ S} + ε (for a
given ε > 0) approaches 1 as i→∞.
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2.1. Stochastic Quasigradient
Methods

Stochastic quasigradient methods are a set
of techniques useful to solve optimization
problems with objective functions and con-
strains of such a complex nature which
make impossible to calculate the precise
values of these functions (let alone of
their derivatives). The basic idea is to
use statistical estimates for the values of
the functions rather than precise valu-
es. For stochastic programming problems
these methods generalize the well-known
stochastic approximation method for un-
constrained optimization of the expecta-
tion of a random function. This stochastic
problem can be defined as follows.

min{Eωf(x, ω) : x ∈ S}, (4)

where x represents the variable to be cho-
sen optimally, S is a set of constraints, and
ω is a random variable belonging to some
probabilistic space (Ω,B,P). Here B is a
Borel field and P is a probabilistic mea-
sure. In this problem we assume that S is
defined in such a way that the projection
operation x → ΠS(x) is comparatively in-
expensive from a computational point of
view, where

ΠS(x) = argminZ∈S ‖ x− Z ‖

In this case it is possible to implement a
stochastic quasigradient algorithm of the
following type

xi+1 = ΠS(xi − ρiϕi), (5)

Here xi is the current approximation of the
optimal solution, ρi is the steep size, and
ϕi is a random step direction. This step di-

rection may, for instance, be a statistical
estimate of the gradient (or subgradient
in the nondifferentiable case) of f(x), then
ϕi ≡ ξi, such that

E(ξi | x1, . . . xi) = ∇Fi(xi) + ai, (6)

i = 0, . . . ,m

where ai decreases for an increasing num-
ber of iterations, the vector ξi is called a
stochastic quasigradient of functions Fi(x),
and ∇F (x) is the subgradient of F (x) in
each point xi. Usually ρi → 0 as i → ∞
and therefore ‖ xi+1 − xi ‖→ 0.
Algorithm (5) can also resolve with pro-
blems with more general constraints for-
mulated in terms of mathematical expec-
tations Eω[fi(x, ω) ≤ 0], i = 1, . . . ,m,
by making use of penalty functions or La-
grangians.

3. Problem definition

The idea of efficiency was introduced by
Rubinstein et al. [1] as follows. Let xi+1 be
the point reached after one single iteration,
and ∆Fi = Fi+1 − Fi the increment of the
value of F . The efficiency of the random
search algorithms is defined as

C = −E(∆Fi)

E(Ni)
, (7)

D = C [Var∆fi]
−1/2, (8)

where Ni is the number of observations
(measurements) of the convex function
F (x) required for the algorithm at the ith
step.
In this paper we are interested in evaluate
the efficiency of the following algorithm [2]:
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xi+1 = xi − αiγiξi, (9)

where αi is the step size, γi is a normaliza-
tion factor proposed by [1], ξi = Υ0

imB
0
il,

and Υ0
il = mı́n{Υi1, . . . ,Υil} denotes the

difference

Υil = f(xi +Bil,Wil)− f(xi,Wi0), (10)

l = 1, . . . ,H
here, Wil and Wi0 are the realizations ob-
served from the noise at points xi and
xi +Bil respectively. B0

il denotes the vector
in which the minimum increment is pro-
duced, and H is the number of points ge-
nerated on the surface of the n-dimensional
unit hipersphere.
Note that Bil are independent and uni-
formly distributed vectors on the surface
of such sphere. We assume that f(x,W ) =
f(x) +W , where W ∼ N(0, σ2). From the
convexity of f we have

f(xi + ∆xi)− f(xi) ≥ 〈∆xi,∇f(xi)〉

or equivalently

f(xi+1) = f(xi + ∆xi) =

f(xi) + 〈∆xi,∇f(xi)〉+ δ(∆xi) = f(xi)

+ ‖ ∆xi ‖ ‖ ∇f(xi) ‖ cos θ + δ(∆xi),

where cos θ is the angle between the unit
vectors ∆xi and ∇f(xi), and δ(∆xi) → 0
as ‖ ∆xi ‖→ 0.
We analyze two cases. In the first, we con-
sider the noise W = 0, and in the second,
W ∼ N(0, σ2).

First case: W = 0. From (9), note that

∆xi = xi+1 − xi = −αγiΥ
0
ilB

0
il, (11)

Substituting (10) in (9) we obtain

f(xi+1) = f(xi) + αiγiΥ
0
il ‖ B0

il ‖
‖ ∇f(xi) ‖ cos θ + δ(∆xi)

Taking into account that ‖ B0
ig ‖= 1, and

for ∆xi sufficiently small, then

f(xi+1) = f(xi) + αiγiΥ
0
il cos θ,

therefore

∆fi = αiγiΥ
0
il cos θ.

Thus, by (7)

Ci = E [f(xi)−f(xi+1)]
H = E [∆fi]

H

= 1
HαiγiΥ

0
il E [cos θ] (12)

where the probabilty density function of
the random angle is given by (see [7])

ζn(θ) =
sinn−2(θ)∫ π

0
sinn−2(θ)dθ

= %n sinn−2(θ), −π/2 ≤ θ ≤ π/2, (13)

where

% =
Γ(n/2)√

π Γ[(n− 1)/2]
,

and Γ denotes the gamma function.

If hi = αiγiΥ
0
il, then substituting (13) in

(12) we have that

E [∆fi] = hi

∫ π/2

−π/2

cos(θ) ζi(θ)dθ =

2%hi

∫ π/2

0

cos θ sinn−2(θ)dθ =
2%hi

n− 1
,

therefore (7) takes the form

−E(∆fi)

E(Ni)
=

2%hi

H(n− 1)
, (14)
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Second case:W ∼ N(0, σ2). Consider the
event

xi+1 =

{
xi − hiB

0
il, if Υ = min{Υil}

xi, in other case
(15)

note that for any i iteration, Υil is such
that

Υil = ψ(xi +Bil,Wil)− ψ(xi,Wi0)
= f(xi +Bil) +Wil − f(xi)−Wi0

= f(xi +Bil)− f(xi) (16)

where Wil and Wi0 are the realizations of
the noise observed at points xi + Bil and
xi. The probability of this event is (see [2])

P =
1

2

(
1 + φ

( | ∆f |
2σ

))
.

where φ(y) =
∫ y

0
2π−1/2e−t2dt. Thus

P =
1

2

(
1 + φ

( | hi cos θ |
2σ

))
.

As in [1], let Q be the random variable de-
fined by

Q =

{
cos θ, with probability (P)
− cos θ with probability (1−P)

for −π/2 ≤ θ ≤ π/2. Then, taking the
mathematical expectation in Q we obtain

E [Q] =
∫ π/2

−π/2
%n P [cos θ sinn−2(θ)]dθ−∫ π/2

−π/2
%n (1−P) [cos θ sinn−2(θ)]dθ =

2%
∫ π/2

0
P [cos θ sinn−2(θ)]dθ−

2%
∫ π/2

0
(1−P) [cos θ sinn−2(θ)]dθ.

After some algebraic manipulations, we-

have

E [Q]
2%n

=
∫ π/2

0
cos θ sinn−2(θ) φ

( | ∆fi |
2σ

)
dθ =

∫ π/2

0
cos θ sinn−2(θ) φ

( | hi cos θ |
2σ

)
dθ.

(17)

Then, Ci takes the form

2%

H
∫ π/2

0
cos θ sinn−2(θ)φ

( | hi cos θ |
2σ

)
dθ.

(18)

In the final analysis we let us estimate the
variance of ∆fi from E[Q2]− [E[Q]]2. Note
that

E[Q2] = 2%

∫ π/2

0

P cos2 θ senn−2(θ)dθ−

2%

∫ π/2

0

(1−P) cos2 θ senn−2(θ)dθ =

2%

∫ π/2

0

φ

( | hi cos θ |
2σ

)
cos2 θ senn−2(θ)dθ

Since, for x small,

φ(x) ≈ 1

2
+

1√
2π

(x− x3

2 · 3 + . . .), (19)

then E[Q] can be written as

%

[
1

n− 1
+

hi

σ
√

2π

∫ π/2

0
cos2 θ senn−2(θ)dθ

]

and E[Q2] is defined by

%

[∫ π/2

0

senn+1(θ)dθ

n
+

hi

σ
√

2π

∫ π/2

0
cos3 θ senn−1(θ)dθ

]
,
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thus (7) takes the form

Cn =
%n

H(n− 1)
+

hi%n

Hσ
√

2π

∫ π/2

0
cos2 θ senn−2(θ)dθ. (20)

Finally, and using (19), (7) can be defined
as

Dn =
%

H(n− 1)Var[Q]
+

hi

∫ π/2
0 cos2 θ senn−2(θ)dθ

H(n− 1)Var[Q]
. (21)

Where (20) and (21) can be written in the
linear form

Cn = an + bnhi, Dn = a′n + b′nhi, (22)

where an = %
H(n−1)

, and a′n = %
H(n−1)Var[Q]

,

bn = hi%n

Hσ
√

2π

∫ π/2

0
cos2 θ senn−2(θ)dθ, and

b′n =
R π/2
0 cos2 θ senn−2(θ)dθ

H(n−1)Var[Q]
.

Table 1 shows some values of Cn. Here,

ϑn =
∫ π/2

0
cos2 θ sinn−2(θ)dθ.

n %n ϑn Cn

2 1.2837 0.7853 0.1283 + 0.0402 hi

3 0.5641 0.3331 0.0282 + 0.0749 hi

4 0.5641 0.1963 0.0188 + 0.0441 hi

5 0.1880 0.1333 4.7 E-3 + (1E-3) hi

6 0.0940 0.0981 1.8 E-2 + (3.6E-4)hi

Table 1: Efficiency of Cn

4. Conclusions

For the algorithm presented, the efficiency

of the search can be viewed as a linear
function of the hi parameter, and of the
evaluated points on the surface of the unit
sphere. Where hi = αiγiΥ

0
im.
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