A New Model to the Synthesis of Sharp Transition FIR Filter  

Abstract :- A novel technique of synthesis of a sharp transition, equiripple passband, low arithmetic complexity, linear phase lowpass FIR filter is proposed. The frequency response is modeled using trigonometric functions of frequency and its slopes are matched at the edges of the transition region. This approach has the advantages of ease of computation of the impulse response and reduction in the Gibb’s phenomenon. The synthesized filter proves to be a good alternative to filters of the same class reported in the literature.
Key-Words: -FIR digital filters, Sharp transition filters, Linear phase filters.

1. Introduction
Linear phase FIR digital filters have many advantages such as guaranteed stability, free of phase distortion and low coefficient sensitivity. A serious disadvantage of FIR filters is its complexity and this problem becomes particular acute in sharp filters which renders real time high speed implementation impractical. Several methods have been proposed in the literature for reducing the complexity of sharp FIR filters. One of the most successful techniques for synthesis of very narrow transition width filter is the Frequency Response Masking (FRM) technique because of reduced arithmetic complexity involved [1]-[2]. The major advantages of FRM approach is that the filter has a very sparse coefficient vector so its arithmetic complexity is very low, though its length and delays are slightly longer than those in the conventional implementations. These filters are suitable for VLSI implementations since hardware complexity is reduced. 

In the FRM techniques, closed form expressions for impulse response coefficients were not obtained. We propose an analytical approach to the design of sharp transition filters with least arithmetic complexity. The approach is simple, analytical, without extensive computations and can be extended to design sharp cutoff highpass, bandpass, bandstop filters with arbitrary passband. Expressions for impulse response coefficients are derived, coefficients obtained and simulation of the individual filters and resultant filter obtained by cascading the two filters is carried out.

2. Filter Model

The proposed model for the pseudo-magnitude of the filter transfer function, the passband, stopband and transition band are modeled using simple trigonometric functions. The model is formulated for equiripple passband, sharp transition and arbitrary passband. Two filters are cascaded to obtain improvement in stopband attenuation of the resultant filter.

2.1 Filter Model Parameters 

In the proposed model for a linear phase, equiripple passband, sharp transition, low pass FIR filter the various regions for the individual filter responses are formulated as follows. The pseudo-magnitude responses of the two filters are modeled as below. 

Passband region the frequency responses are 
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where 
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In the transition region which also spans part of the passbands (
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Transition region frequency responses are
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where kt1 , kt2 are the filter parameters in the transition region and are integers, 
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Stopband region the frequency responses are 
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where 
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is the stopband loss, ks1, ks2 are the filter parameters in the stopband region.

From (1), 
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 where L is odd i.e. 1,3,5.. to give negative slope due to roll off.  
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Magnitude response of the two individual filter models as shown in Fig.1 at various frequencies are
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2.2 Slope Equalization:

The parameters of the model are evaluated by equalizing the slopes of the pseudo-magnitude response function at 
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. This allows the proposed function to be continuous thus reducing the effects due to Gibb’s phenomenon.
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Also,    
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 EMBED Equation.3  [image: image63.wmf](

)

[

]

(22)

        

          

          

          

2

δ

k

 

         

          

ω

H

d

ω

d

    

ω

at 

 

Slope

p

ω

ω

pm

p2

p2

-

=

=

=


Also,
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Equalization of slopes at 
[image: image66.wmf]p1

ω

 and 
[image: image67.wmf]p2

ω

 yields,


[image: image68.wmf](25)

        

          

          

          

1

A

2

δ

 

k

 

 

 

k

2

1

p

t1

÷

ø

ö

ç

è

æ

-

=



[image: image69.wmf](26)

        

          

          

          

1

A

2

δ

 

k

 

 

 

k

2

2

p

t2

÷

ø

ö

ç

è

æ

-

=


From (14) and (18),
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where kz=0,1,2….due to negative slope at roll off. kz=0 gives the narrowest transition region width for the filter. 

In the stop band,


[image: image72.wmf](

)

      

          

          

          

z

ω

ω

ω

pm1

H

d

ω

d

  

 

z

ω

at 

 

Slope

=

ú

û

ù

ê

ë

é

=
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 EMBED Equation.3  [image: image75.wmf](30)

      

          

          

          

2

s

δ

 

s2

k

 

 

-

=


Also, slope at z     
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From (27) and (28),
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Equalization of slopes at 
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The magnitude response 
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 are as shown in fig. 1. 
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Fig.1(a) Magnitude responses 
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2.3 Impulse Response Coefficients

Let h(n), 0 ≤ n ≤ N-1, be the impulse response of an N-Point linear phase FIR digital filter. The linear phase condition implies that the impulse response satisfies the symmetry condition [3], 

h(n) = h (N-1-n), n = 0,1,2…N-1.              (37)

The frequency response for a linear-phase FIR filters for odd N is given by
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where the pseudo magnitude response Hpm(ω) is
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The impulse response sequence determined by this frequency response is obtained from
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The impulse response coefficients h(n) for the resultant filter are obtained by evaluating the integrals below.
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where k=1,2,…(N-1)/2.
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Fig. 2 Magnitude response of the proposed lowpass filter (a) Linear plot (b) dB plot

3. Results  

A pair of lowpass linear phase FIR filters with passband edges specified at 0.558π and 0.559π respectively, stopband edges at 0.572π and 0.603π respectively, maximum passband ripple each of ±0.4dB and minimum stopband attenuation each of 25dB were designed using our approach. The filters are cascaded to obtain the resultant filter.

The design and numerical computation was done using MATLAB. The integrals in equations (41) and (42) are evaluated to obtain the coefficients of the resultant filter. Stopband attenuation of the resultant filter improves however there is imperceptible change in transition region width. Passband ripple of the resultant filter improves slightly from those of the component filters. The specification of the filter obtained after cascading the two filters were maximum passband ripple of ±0.3dB, minimum stopband attenuation of 41.5dB and transition bandwidth of  0.012π was obtained. The filter order required for realization was found to be 290. The magnitude response of the resultant filter obtained is shown in fig. 2. 

4. Conclusions
We have proposed a model for a sharp transition, equiripple passband, low arithmetic complexity, linear phase lowpass FIR filter. Various regions of the filter are approximated with trigonometric functions of frequency, making it convenient to evaluate the impulse response coefficients in closed form. A filter model is formulated and its transfer function is evolved in frequency and time domain. A pair of filters is cascaded to improve the stopband attenuation of the resultant filter.  This approach can be extended to sharp cutoff highpass, bandpass, and bandstop filters with arbitrary passband.
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