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Abstract The governing equations de-
scribing the unsteady boundary layer flow of a
power-law non-Newtonian conducting fluid through
a porous medium past an infinite porous flat plate
are transformed to a third order non linear ordi-
nary differential equation. An additional boundary
condition is written as f(0) = 0 by (Gamal M.
Abdel- Rahman [1] (IASME transa-ctions 1(3),
July 2004)). This boundary condition has not
any physical meaning and is not matching to the
mathematical analysis described. In this article,
the second order non-linear ordinary differential
equation with the appropriate boundary condition
is solved analytically using the method of successive
approximations and numerically using the shooting
method.

1 . Introduction

Gamal Abdel- Rahman [1] has investigated
the formation of magnetohydrodynamic, unsteady
flow of an incompressible, non-Newtonian power-
law electrically conducting fluid past an infinite
porous plate in a porous medium. By assuming
that the magnetic Reynolds number is small and
applying a similarity solutions, Gamal has obtained
a third order non- linear ordinary differential equa-
tion for f(η) (see equation (10) in [1]). The trans-
formed boundary conditions for the problem are
f ′(0) = 0 and f ′(∞) = 1 He assumed an addi-
tional boundary condition f(0) = 0 (equation (11)
in [1]) , which has not any physical meaning and is
not matching to the mathematical analysis of the
problem.

Also the special cases which were mentioned by
Gamal [2-3] cannot be obtained from his analy-
sis . For example case (1): for Newtonian fluid

and non-porous medium, one obtains the equa-
tions of Takara, H.S., Nath, G. [2]. Takhar and
Nath [2] studied the unsteady laminar incompress-
ible boundary layer flow of an electrically conduct-
ing fluid in the stagnation region of two dimensional
and axisymmetric bodies with an applied magnetic
field while Gamal has studied the boundary layer
over a plate. Case (2): In the absence of the New-
tonian fluid, we obtained the equations of Helmy
[2]. Helmy discussed the unsteady 2-dimensional
laminar free convection flow of an incompressible,
viscous, electrically conducting (Newtonian or po-
lar) fluid through a porous medium bounded by an
infinite vertical plane surface of constant tempera-
ture, while Gamal used a stationary plate. The aim
of this comment is to correct the mathematical for-
mulation and present an analytical and numerical
solution for this problem.

2 . Mathematical Formulation

Consider unsteady hydromagnetic flow of an in-
compressible, non-Newtonian power- law electri-
cally conducting fluid past an infinite porous plate
in a porous medium. In cartesian coordinate sys-
tem, let x axis be alon the plate in the direction of
the flow and y axis normal to it. A magnetic field
is introduced normal to the direction of the flow.
We assume that the magnetic Reynolds number is
much less than unity so that the induced magnetic
field is neglected compared to the applied magnetic
field. Further, all the fluid properties are assumed
constant. Under the above assumptions with the
usual Boussinesq’s approximation into account, the
governing equations for continuity and momentum
are:
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where u and v are the components of the velocity
in x− and y−direction, respectively, t is the time,
ρ is the density of the fluid, ε is the permeability
constant, k is the viscosity, µ is the magnetic per-
meability, σ is the electrical conductivity, H is the
magnetic field strength and U is the outer flow ve-
locity. Using the following notation

v = k/ρ (3)

σµ2H2

ρ
= N (4)

Then equation (2) can be written as
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Integrating equation (1) we have v = v0(t) The ini-
tial and boundary conditions are

u = 0, v = v0(t) at y = 0, t > 0

(6)
u −→ U as y −→∞ , t > 0

where v0(t) is the velocity of injection at the in-
finite plate. Assume that

U = u∞ exp[αt] (7)

v0 = [(N +α)/(νun−1
∞ )]− 1
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n + 1
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where α and u∞ are constants.
We further define the following similarity variable

η = y[(N + α)νun−1
∞ ]

1
n+1 exp[α(1−n)

n+1 t]

(9)u = Uf(η)

where f is the non dimensional velocity.
From equations (7)- (9) substituting in equation

(5) and simplification leads to the following non-
linear ordinary differential equation.

nf ′′f ′n−1 + [1 + S/(1 + M)](1− f)−

1/(1 + M)][1/α + η(1 + n)/(1− n)]f ′ = 0 (10)

Where M = N/α is the magnetic number, S =
v/αε is the parameter of permeability and the prime
denotes differentiation with respect to η the trans-
formed boundary conditions are

η = 0 : f = 0

(11)
η −→∞ : f −→ 1

3 . Analytical Solution

The successive approximations method is used to
obtained the solution to (10), the different orders
are obtained from the equation.
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(12)i = 0, 1, 2, ......

Assume that the zero-approximation solution may
be written as follows

f0 = α0(1− exp(−βη)) (13)

where α0 and β are two arbitrary constants chosen
such that the boundary conditions are satisfied in
the zero- approximation f0(∞) = 1 and in the first
approximation f1(0) = 0 i.e. α0β = 1 and β is given
as:

βn+1n(n + 1)(M + 1)(2− n)3 + β
(2− n)(1 + n)

α
+

[2(1− n)− (2− n)(1 + n)(M + 1)−
S(1 + n)(2− n)] = 0 (14)

Integrating (12), using the fact that ∂u
∂y −→ 0 as

y −→∞ and the boundary conditions (11) we have,
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4 .Numerical Solution

Equation (10) with the boundary conditions (11)
were solved numerically, using the forth order
Runge- Kutta method. The missing value of f ′(0)
was determined by a shooting technique.

5 . Discussion

Equation (10), with the boundary conditions(11),
has been solved numerically using the shooting
method. The effect of the magnetic parameter
on the velocity distribution are shown in figure.1.
From this figure it is clear that the velocity increases
with the increasing of the magnetic parameter M ,
which is contradicting the behavior achieved in the
discussion of Gamal [1].

In figure 2 we compare our solution with the nu-
merical solution using the shooting method. From
this figure one finds that the velocity distribution
obtained analytically are in good agreement with
that obtained numerically.

The numerical investigation to the analytical so-
lution are shown in figures 3-5. The velocity de-
creases as the magnetic parameterM increase as
shown in figure 3. From figure 4 one sees that the
velocity distribution increases with the increasing of
the parameter of permeability S . Figure 5 shows
that the velocity distribution decreases as the power
law index n increases.

From table 1 it is clear that both analytical and
numerical values of f ′n(0) are in good agreement.
Table 2 illustrates that the skin- friction coeffi-
cient increases with the increasing of the magnetic
parameterM and the parameter of permeability S .
The skin- friction coefficient decreases as the power
law index n increases.

6 . Conclusion

The problem of unsteady magnetohydrodynamic
boundary layer flow for a power-law non-Newtonian
conducting fluid through a porous medium past an
infinite porous flat plate is investigated . A similar-
ity transformation is used to convert the governing
partial differential equation to ordinary differential
equations.The successive approximations method is
used to solve the resulting non -linear ordinary dif-
ferential equation and the results are compared with
the numerical solution . It is found that the ve-
locity distributions decrease as either the magnetic

parameter is increased or the power law index in-
creases . Also , the fluid velocity increases with
the increasing of the permeability parameter . In
addition , it is concluded that the skin-friction co-
efficient increases as either the magnetic parameter
or the permeability increases , while it is decreased
as the power law index is increased.

S \ n 0.7 0.9 1.2
An 0.874504 0.812834 0.683359

1
Nu 0.870794 0.806049 0.75015

An 0.90422 0.888104 0.836751
2

Nu 0.95892 0.903274 0.828464

Table 1. Comparison of analytical (An) and
numerical (Nu) skin -friction coefficient for α = 0.3

and M = 3

M S n (f ′(0))n

3 2 0.9 0.888104
3 2 1.2 0.836751

0.5 2 0.75 0.608433
1 2 0.75 0.723065
3 0.1 0.8 0.745192
3 1.1 0.8 0.850028

Table 2. The skin- friction coefficient for
different values of M , S and n for α = 0.3
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Figure 1. Velocity distribution for various values of M at
n = 1.2 , S = 2 and  α = 0.3
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Figure 2. Velocity distribution for analytical and numerical
profiles at n = 0.9 , S = 2 , M = 3 and  α = 0.3
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Figure 3. Velocity distribution for various values of M at
n = 0.75 , S = 2 and  α = 0.3
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Figure 4. Velocity distribution for various values of S at
n = 0.75 , M = 3 and  α = 0.5
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Figure 5. Velocity distribution for various values of n at
α = 0.3 , M = 3 and  S = 2


