A New Key Exchange Scheme Based on Extended Chebyshev Polynomials
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Abstract:- Kocarev gave the first cryptosystems based on the semi-group property of Chebyshev polynomials, which seemed excellent but actually insecure. Due to the inherent periodicity of trigonometric function, an attack can easily get plaintext given ciphertext. In this paper, we extend Chebyshev polynomials from real number to finite fields to avoid the attack and present the corresponding key exchange scheme, which is secure and practical.
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1 Introduction

In order to realize secure and fast communication in public channel, there is a key exchange method before the desired message is encrypted. The first key exchange scheme appeared in the seminal paper by Diffie and Hellman. Over several decades, based on traditional mathematic difficult question, RSA and ECC have been given[1-5]. In this paper, we propose a key exchange scheme based on extended Chebyshev polynomials, which is practical and secure. In section 2, we review Diffe-Hellman key exchange. Section 3 presents property of extended Chebyshev polynomials. In section 4, a key exchange scheme and analysis of its performances are given. In the end, we close the paper with conclusion.
2 Diffie-Hellman key exchange 
The purpose of the algorithm is to enable two users to exchange a key securely that can then be used for subsequent encryption of messages. The Diffie-Hellman key exchange is summarized as following [15]:
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by the rules of modular arithmetic
The security of the Diffie-Hellman key exchange lies in the fact that, while it is relatively easy to calculate exponentials modulo a prime, it is very difficult to calculate discrete logarithms. For large primes, the latter task is considered infeasible.

3 Properties of extended Chebyshev polynomials over finite fields

3.1 Extended Chebyshev polynomials over finite fields

Since Chebyshev polynomials have semi-group property [6] [7] [8] on real field R, they also have semi-group property over integer Z. Then we can further extend the definition field and value field of Chebyshev polynomials to finite field ZP, where P is a prime number. Over finite field ZP we can definite the Chebyshev polynomials as the following.

Definition 3.1.1[14]：Let n∈Z and variable
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where 
[image: image7.wmf])

P

(mod

1

)

x

(

T

0

º

 and 
[image: image8.wmf])

P

(mod

x

)

x

(

T

1

º

.

    Thus, we can get Chebyshev polynomials on finite field ZP as the following:
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According to[7]， the semi-group property of extended Chebyshev polynomials over finite fields is that:
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3.2 A new trap-door one-way function based on extended Chebyshev polynomials over finite fields

We know any Chebyshev polynomial 
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In equation （5）, gaining 
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 given n and x is very easy, but gaining n given 
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 and x is very difficult, and almost unfeasible in computation. The difficulty can be compared with the intractability of discrete logarithm problem. When the value of n in equation（5） is equal to the value of discrete logarithm, solving the n of equation （5） is more difficult and complex than solving discrete logarithm for the existence of other low power elements in equation （5）, such as xn-1, xn-2, and so on. So equation （5） has a good one-way property in computation. Equally, Chebyshev polynomials on finite fields have good one-way property.

In equation （5）, n is equal to a trapdoor. If we know n and x, it is easy and fast to compute 
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 by using following fast algorithm. According to the semi-group property of equation (4), and
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The number of iteration is k
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If n isn’t known, the only possible way is to compute 
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 one by one. However, if n is a large enough number, it is impossible to do so.
Due to the one-way trapdoor property of Chebyshev polynomials over finite fields, they can be used to construct key exchange scheme. Since we extend the Chebyshev polynomials from x∈[-1, 1] to 
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, the attack by the way of [7] is invalid to our cryptosystem. Moreover, it is clear that our cryptosystem is more secure than RSA and ElGamal system. Here we assume that ZP is a finite field and Zn is an integer ring. All computation of the following is over ZP and Zn.

4 The new key agreement based on extended Chebyshev polynomials 

Extended Chebyshev polynomials enjoying the semi-group property and the one-way trap door function can be also used to design a Diffie-Hellman like key agreement scheme. Two definitions [14] are firstly given:

Definition 4.1 Key establishment is any process whereby a shared secret key becomes available to two or more parties, for subsequent cryptographic use.

Definition 4.2 A key agreement protocol or mechanism is a key establishment technique in which a shared secret is derived by two or more parties as a function of information contributed by, or associated with, each of these, ideally such that no party can predetermine the resulting value.
We assume that two entities of communication are Alice and Bob. The process of key agreement is that:
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An adversary who taps the channel can employ successful attack only when gains KA or KB given 
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. In fact, from analysis above, it is impossible. Moreover, from the formula (6), it is fast to compute 
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given KA or KB. Therefore, our scheme is feasible and practical.
5  Conclusion
In conclusion, in this letter we extend Chebyshev polynomials from real number to finite fields. Based on this extended Chebyshev polynomials over finite fields, we have proposed a novel key exchange scheme, which is secure and practical.
From the analyses of this paper, we can conclude that (i) any algebraic polynomials, which have semi-group property of equation (2) and recursion property like equation (1) over real field, can be used to construct a trap-door one-way function. (ii) the proposed function can be used to construct  public key encryption algorithm , entity authentication and digital signature algorithm besides key agreement. 
The detailed study of the proposed extended Chebyshev polynomials as well as the further application in cryptography is topics of our future research.
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