Security Association in Mobile Ad Hoc Networks Through Self-Organized Public Key Certification

 PROF. D. S. THENMOZHI

 R. MURUGAN

 Asst. Professor

 II Year M.E. (CSE)

 Dept. of Computer Science & Engg. Dept. of Computer Science & Engg

 Sona College of Technology , Salem-5 Sona College of Technology, Salem-5

 INDIA – 636 005 INDIA – 636 005

ABSTRACT:

Mobile ad hoc networks (MANET) usually do not provide on-line access to trusted authorities or to centralized servers and they exhibit frequent partitioning due to link and node failures and to node mobility. For these reasons, traditional security solutions that require on-line trusted authorities or certificate repositories are not well suited for securing ad hoc networks. In this paper, we propose a fully self-organized public-key management system that allows users to generate their public-private key pairs, to issue certificates, and to perform authentication regardless of the network partitions and without any centralized services. Furthermore, our approach does not require any trusted authority, not even in the system initialization phase.

 Key Words : Mobile Ad Hoc Networks, Authentication, Public Key Cryptography., Self

 Organization, Security Association

1. Introduction

By definition, a mobile ad hoc network does not rely on any fixed infrastructure; instead, all networking functions (e.g., routing, mobility management, etc.) are performed by the nodes themselves in a self-organizing manner. For this reason, securing mobile ad hoc networks is challenging.

In our view, there are two extreme ways to introduce security in mobile ad hoc networks: (1) through a single authority domain, where certificates and/or keys are issued by a single authority, typically in the system setup phase or (2) through full self-organization, where security

does not rely on any trusted authority or fixed server, not even in the initialization phase.

In this paper, we take the second approach and we propose a MANET authentication through self-issued certification system that allows users to create, store, distribute, and revoke their public keys without the help of any trusted authority or fixed server.

The main problem of any public-key based security system is to make each user’s public key available to others in such a way that its authenticity is verifiable. In mobile ad hoc networks, this problem becomes even more difficult to solve because of the absence of centralized services and possible network partitions. The best known approach to the public-key management problem is based on public-key certificates. A public-key certificate is a data structure in which a public key is bound to an identity (and possibly to some other attributes) by the digital signature of the issuer of the certificate.

In our system, users’ public and private keys are created by the users themselves. For simplicity, we assume that each honest user owns a single mobile node. Hence, we will use the same identifier for the user and her node (i.e., both user u and her node will be denoted by u). Certificates in our system are stored and distributed by the nodes in a fully self-organized manner. Each certificate is issued with a limited validity period and therefore contains its issuing and expiration times. Before a certificate expires, its issuer issues an updated version of the same certificate, which contains an extended expiration time. We call this updated version the certificate update. Each node periodically issues certificate updates, as long as its owner considers that the user-key bindings contained in these certificates are correct.

In our system, key authentication is performed via chains of public-key certificates in the following way. When the user u wants to obtain the public key of another user v, she acquires a chain of valid public-key certificates such that:

1) The first certificate of the chain can be directly verified by u, by using a public key that u holds and trusts (e.g., her own public key).

2) Each remaining certificate can be verified using the public key contained in the previous certificate of the chain.

3) The last certificate contains the public key of the target user v.

To correctly perform authentication via a certificate chain, a node needs to check that: (i) all the certificates on the chain are valid (i.e., have not been revoked), and (ii) all the certificates on the chain are correct (i.e., not false; the certificates contain correct user-key bindings). To find appropriate certificate chains to other users, each node maintains two local certificate repositories: the non-updated certificate repository and the updated certificate repository. The non-updated certificate repository of a node contains expired certificates that the node does not keep updated. The reason for collecting and not updating expired certificates is that most of the certificates will permanently be renewed by their issuers, and only a few will be revoked. Therefore, the non-updated repositories provide the nodes with a very good estimate of the certificate graph. The selection of certificates into the node’s updated repository is performed according to an appropriate algorithm.

When a user X wants to authenticate a public key KUY of another user Y, both nodes merge their updated certificate repositories and X tries to find a certificate chain to Y in the merged repository. If found, this chain contains only updated certificates because it is constructed in the updated repositories. To authenticate KUY, X then further checks whether the certificates on the chain have been revoked (since the last update) and the user-key bindings in the certificates are correct. X performs both validity and correctness checks locally.

If the authentication of KUY through the updated certificate repositories fails, node X tries to find certificate chains to Y in its (X’s) joint updated and non-updated repositories. If X finds a chain to Y, this chain will likely contain some expired certificates, because it is constructed in the updated and non-updated repositories. To complete the authentication, X requests, from their issuers, the updates of the expired certificates that lay on the chain and checks their correctness. If the certificates are both valid and correct, X authenticates KUY.. Here again, X performs the certificate correctness check locally. If node X cannot find any certificate chain to KUY, it aborts the authentication.

2 Basic Operations Of Our Solution

 In this model, the public keys and the certificates of the system are represented as a directed graph G(V,E), where V and E stand for the set of vertices and the set of edges, respectively. We call this graph the certificate graph. The vertices of the certificate graph represent public keys and the edges represent certificates. More precisely, there is a directed edge from vertex KUX to vertex KUZ if there is a certificate signed with the private key of u that binds KUZ to a an identity. A certificate chain from a public key KUX to another public key KUY is represented by a directed path from vertex KUX to vertex KUY in G. Thus, the existence of a certificate chain from KUX to KUY means that vertex KUY is reachable from vertex KUX in G. In our model, we represent the updated and the non-updated certificate repositories of user X by the certificate graphs GX and GNX , respectively. Therefore, for any X, GX is a subgraph of G, but GNX is not necessarily a subgraph of G, as it may also contain some implicitly revoked certificates.

 The initial phase of our scheme is executed in four steps:

Step 1: The user creates her own

 public/private key pair.

Step 2: Issuing of certificates.

Step 3: Certificate Exchange

Step 4: Creation of nodes updated

 certificate repositories

 In step 2, she issues public-key certificates based on her knowledge about other users’ public keys. Note that the issuing of public-key certificates also continues when the system is fully operational (i.e., when the updated and non-updated repositories are already constructed) as users get more information about other users’ public keys. During this process, the certificate graph G is created. The speed of the creation of a usable (i.e. sufficiently connected) certificate graph heavily depends on the motivation of the users to issue certificates.

In step3, the node performs the certificate exchange. During this step, the node collects certificates and thus creates its non-updated certificate repository. Along with the creation of new certificates, the certificate exchange also continues even when the system is fully operational. This means that nodes’ non-updated repositories will be continuously upgraded with new certificates.

In step 4, the node constructs its updated certificate repository. The node can perform this operation in two ways, either by communicating with its certificate graph neighbors, or by applying the repository construction algorithm on the non-updated certificate repository. When the node constructed its updated certificate repository, it is ready to perform authentication.

 If there is no path from KUX to KUY in GX(GY, X tries to find a path from KUX to KUY in GX (GNX. If such a path is found, X updates the expired certificates, checks their correctness and performs authentication. If there is no path from KUX to KUY in GX (GNX , X fails to authenticate KUY.

2.1 Creation of public keys and public-key

 certificates

The public key and the corresponding private key of each user is created locally by the user herself. Public-key certificates are issued by the users. If a user X believes that a given public key KUY belongs to a given user Y, then X can issue a public-key certificate in which KUY is bound to Y by the signature of X. Certificates are issued with a limited validity period TY , and each certificate contains its issuing and expiration times. Here, for simplicity, we assume that all certificates are issued with the same validity period. When a certificate expires and its issuer believes that the user-key binding certified by that certificate is still valid, the node issues a new updated version of the same certificate. The updated certificate contains the same user-key binding as the old certificate, but has a new issuing time and an expiration time that is extended by TY .

 The dynamic nature of ad hoc networks enables users to gather more experience about other users, issue a higher number of certificates and better evaluate their confidence in the certificates they issue.

 Figure 1 : Each user creates her own public /

 private key pair K / Pr K (Step 1)

 G

 KUY

KUX

Figure 2:Issuing Public – key certificates (Step 2)

 GX N

------- updated local repository of X (GX)

a) Node X constructs its updated repository from GX N
Figure 3: Certificate exchange (Step 3)

 G

- Certificate request

 --------- - Updated local repository of X

 b) Node X constructs its updated repository by

 communicating with other nodes

2.2 Certificate exchange

The certificate exchange mechanism is an important and low cost mechanism that allows nodes to share and distribute certificates that they issue and hold.

The certificate exchange mechanism consists of the periodic exchange of certificates between neighboring nodes. Each node has a local time counter and periodically polls its physical neighbors for certificates. For each node, there is a predefined frequency at which it performs the certificate exchange with its neighbors. This frequency is defined in terms of the exchange period TE as 1/TE. For simplicity, we assume that each node exchanges certificates with the same exchange period TE. We also note that the nodes do not run the exchange synchronously. The certificate exchange is performed in the following way. Each node u multicasts its subgraphs GX and GXN to its physical neighbors. In this message, X does not send actual certificates but only appropriate unique identifiers (e.g., their hash values). The neighbors of node X that receive the message from X reply with the hash values of the certificates in their updated and non-updated repositories. Node X then crosschecks the received values with the certificates that it holds and requests from its neighbors only the certificates that it does not hold. Here it is important to note that when performing the certificate exchange, nodes do not attempt to gather the updates of the certificates that they already hold. The nodes will gather only certificates with different user-key bindings or signatories than those that they already stored.

For this, certificates are hashed without their issuing and expiration times.

Only if the local storage of the node becomes too small to store additional certificates, will the node remove expired certificates based on their expiration time (i.e., certificates with the earliest expiration time will be deleted first). By the certificate exchange mechanism, nodes accumulate certificates in their non-updated certificate repositories at a low communication cost because the exchanges are performed locally in one hop.

2.3 Constructing updated certificate repositories
Constructing an updated certificate repository of node X means, in terms of our model, selecting a subgraph GX of the certificate graph G. We assume that each node uses the same local repository construction algorithm to construct its subgraph. When the algorithm is executed on G by node X, it results in a subgraph GX.

The updated local repository of node X can be constructed in two ways. In the first approach, node X applies the algorithm A on GX N , which results in GX. While executing the algorithm, X checks, by communicating with its issuers, the validity of each certificate that it stores in GX. In the second approach, node X constructs its updated repository by communicating with its certificate graph neighbors.

2.4 Certificate revocation

Each user can revoke a certificate that she issued if she believes that the user-key binding expressed in that certificate is no longer valid.

In the explicit revocation scheme, to revoke a certificate that she issued, the user issues an explicit revocation statement. Due to the way the nodes construct their updated repositories, each node has a list of nodes that request updates for the certificates that it issued. Therefore, when the user revokes a certificate, it does not need to send the revocation to all nodes, but only to the nodes that regularly update it.

The implicit revocation scheme is based on the expiration time of the certificates. Specifically, each certificate is implicitly revoked after its expiration time. As we already described, each certificate contains its issuing time and a validity period TY . After this period elapses, the certificate is not considered valid anymore.

Key revocation is based on the same scheme as for certificate revocation: If a user believes that her private key has been compromised, she revokes its corresponding public key by notifying the users that issued certificates to her. These users will then use the certificate revocation mechanisms to revoke the certificates that contain the public key in question.

2.5 Authentication with helper nodes

When two users want to perform authentication, they merge only their updated certificate repositories. In order to facilitate authentication, a simple extension to the proposed key authentication scheme is for the node X that performs authentication, to take advantage of the certificates from the updated local repositories of the nodes in its physical neighborhood. In this case, we refer to the nodes in the one-hop physical neighborhood of X as the helper nodes.

2.6 Load balancing

A load balancing scheme significantly improves the distribution of the communication load among nodes.

Our scheme works as follows. Each node X provides the updates directly to up to S other nodes, and any additional node that needs certificate updates from X gets them from the nodes that get the updates directly from X. Here, S is the size of X’s updated local repository. The first S nodes that request updates from X get them directly from X. Each following node that requests a certificate or its update from X receives a list of nodes that get the updates directly from X. Each time that an indirectly updated node requires a certificate update from X, it randomly selects a node from X’s list of directly updated nodes and requests an update from that node.

Unequal load balancing is a consequence of the repository construction algorithm and the characteristics of the certificate graph. More precisely, if the repository construction algorithm is designed such that many nodes keep updated copies of the certificates issued by a single node X, this will increase X’s communication load. Such a high communication load of a single node, can be due to the specific topology of the certificate graph.

2.7 Maximum Degree Algorithm
The Maximum Degree algorithm selects a subgraph that consists of two logically distinct parts: an out-bound and an in-bound subgraph. More precisely, the subgraph consists of several vertex-disjoint out-bound and vertex disjoint in-bound paths (the subgraph that is built resembles a star). When starting from a vertex Ku, Maximum Degree builds eout = min(degout, c) vertex-disjoint out-bound and ein = min(degin, c) vertex-disjoint in-bound paths where degout and degin denote the number of Ku’s outgoing and incoming edges, respectively, and c is a predefined constant that represents the desired number of paths to be built. The lengths lin and lout of in-bound and out-bound paths are computed as s/2ein and s/2eout, respectively, where s is an input of the algorithm, representing the required number of vertices of the resulting subgraph.

Figure 4: An example out-bound subgraph of vertex Ku with c=2 and s = 6

[image: image1.png]TN
[ieny N

3. Conclusion
In this paper, we addressed the problem of security association in mobile ad hoc networks. For that we proposed a fully self-organized public-key management scheme that does not rely on any trusted authority or fixed server, not even in the initialization phase.

The main contributions of this work can be summarized as follows.(i) We proposed a fully self-organized public key management system for security association in mobile ad hoc networks;(ii) We showed that two users in a mobile ad hoc network can perform key authentication based only on their local information, even if security is performed in a self-organized way; (iii) We showed that with a simple local repository construction algorithm

It is also important to note that the proposed solution requires users’ conscious involvement only when their public/private key pairs are created and for issuing and revoking certificates; all other operations (including certificate exchange and construction of certificate repositories) are fully automatic.

References

[1] C. E. Perkins, Ad Hoc Networking, Addison Wesley Professional, Dec. 2000.

[2] L. Zhou and Z. Haas, “Securing Ad Hoc Networks,” IEEE Network, vol. 13, no. 6, pp. 24–30, November/December 1999.

[3] J.-P. Hubaux, L. Buttyan, and S.J. Capkun, “The Quest for Security in Mobile Ad Hoc Networks,” in Proceedings of the ACM Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2001.

[4] D. B. Johnson, “Routing in Ad Hoc Networks of Mobile Hosts,” in Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications, December 1994.

[5] Frank Stajano, Security for Ubiquitous Computing, John Wiley and Sons, Feb. 2002.

[6] www.ieee.org

[7] www.ietf.org

[8] www.csrc.nist.gov/manet

[9] www.cs.vu.nl

KUX

