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Abstract: In various fields of science and technology it is often necessary to solve inverse problems, where from measurements of state of the system or process it is required to determine a certain typesetting of the causal characteristics. It is known that infringement of the natural causal relationships can entail incorrectness of the mathematical stating of inverse problems. Therefore the development of efficient methods for solving such problems allows one to considerably simplify experimental research and to increase the accuracy and reliability of the obtained results due to certain complication of algorithms for processing the experimental data. The problem of determination of specific heat (or thermal diffusivity) coefficients considering other known characte​ristics of heat transport process is among incorrect inverse problems. These inverse problems for coefficients are quite difficult even in the case of homogenous media. In this paper it is supposed that the heat transport equation is non-homogeneous and an algorithm for determination of the specific heat coefficients for both the media is proposed. In this work it is considered the two-dimensional coefficient inverse problem in the layered area. In order to determine the characteristics of area, at first the method of conservative averaging is applied to the initial problem. The obtained one-dimensional inverse problem is system of two differential equations and consists of the determination of some entering in it parameters. After solving this problem, we will find the pseudo-characteristics of the considered layered area. Further in the work it is proposed the method of obtaining the true characteristics of the layered area with any accuracy on basis of available pseudo-characteristic data. In the work also it is proved the stability of the proposed method for determining of all coefficients of specific heat of multilayered areas.
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1
Introduction                                      In order to determine the thermal capacity in a homogeneous medium, with other characteristics of the process of heat propagation being known, the so-called “Transient Hot-Strip Method” (or THS method, see e.g. [1–3] and references therein) can be used, which is applicable for solids and fluids with low electric conductivity. According to the method, between two halves of the specimen, whose thermal characteristics should be found, a thin metallic strip is clamped. Such a strip is used both as continuous plane resistive source of heat and as the sensor of temperature increase in the strip itself. In the mentioned works [1–3] a homogeneous material is considered. In work [3] the problem is solved by a numerical method – namely, by the method of finite elements. In [4] and [7], similar to the present work, a two-layer medium is analyzed. As opposed to [3], in works [4] and [7] we apply an analytical method of solution, thus narrowing the problem – namely, we determine only two coefficients of thermal conductivity assuming the thermal capacity to be known. In this work it is supposed that the material is two-layered in the direction parallel to the “Hot-Strip” surface.             In [4], for solution of the homogeneous inverse problem for coefficients a qualitatively new mathematical method is proposed, which allows for determination of both the coefficients of thermal diffusivity by measuring the temperature at some points of a two-layer medium that are convenient from the experimental point of view. This mathematical model is reduced to solving sets of Fredholm’s integral equations of the first kind.  This incorrect problem is solved using a Tychonoff’s smoothing functional [5]. In the given work, contrary to [4], the problem is supposed to be non-homogeneous, that is, the equation for heat transfer is non-homogeneous with a piece-wise continuous density. Apart from that, in contrast to the method proposed in [4], the given work does not require that additional measurements be made at some points of the two-layer medium. 
2 Problem Formulation

So, in this work it is considered the two-layered and one-dimensional on spatial variable coefficient heat transfer problem: it is required to determine the coefficients of thermal capacity 
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 provided that known initial and boundary conditions, provided that realization of conjugation conditions in the border of layers and also under known heat conductivity coefficients 
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 of both layers. In addition it is assumed that the additional information about the spreading of heat in the fixed point 
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.           As a rule in the real physical processes there is following condition instead of this condition: the values of the function 
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 are known. Now let us formulate the faithful mathematical setting of the given inverse problem: it is required to determine two constants 
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, (2)    where 
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 are known constants, the function 
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We must add the following conditions to these equations:                                                                   – initial conditions 
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              (4) – boundary conditions 
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                      (6) – conjugation conditions
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   (8) – additional information
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3 Problem Solution

To solve the formulated above inverse problem (1)-(9) we will introduce the 
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 with help following decompositions (conservative averaging method, see e.g. [6] and references therein): 
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    (13) where 
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 are not yet known constants. Substituting the formulae (12) and (13) into (7) we get 
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             (14) Analogously, substituting the formulae (12) and (13) into (8) we obtain that 
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 Now we consider (16) in (14): 
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    (17) Taking into account the decomposition (12) into (10) and also the decomposition (13) into (11) we receive that 
[image: image44.wmf]1

01

.

mmee

-

==-

 Thus the constants 
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 are found already. We can rewrite the formulae (16) and (17) as following form: 
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 Then from (12) and (13) it follows that
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               (19) Now let us integrate the equations (1) and (2) over a variable 
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                         (21) Substituting (18) into (20), and similarly, substituting (19) into (21) we have finally 
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                              (23) From the formulae (22) and (23) it follows that 
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     The solution of  the last ordinary differential equation is following function:  
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(24) From (22) and (24) it is easy to get the explicit form of the function 
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     (25) Similarly, from (23) and (24) also it is easy to receive the explicit form of the function 
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  (26) The formulae (12) and (13) together with formulae (24)-(26) give us the finding solution of direct problem (1)-(8). To find the constants 
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         Let us denote
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                    Then from formula (27) it follows that 
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 From here 
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 (28) for 
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4
Conclusion
The formula (28) lets to determine average value of required constants 
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           where 
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. It should be noted that to determine 
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 with help the formula (28), it is more precise and more effective to use interpolating polynomial for the function 
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. It is not difficult to show that described above approach for determine 
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 is stable method in view of imperfect initial data.
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