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Abstract: - The paper analyses emergency stator feeding of a three-phase induction motor by injected currents after 
disconnection of the failed leg of feeding converter and subsequent reconfiguration of the converter. At 
reconfiguration, the winding fed by the damaged leg is disconnected and the stator winding neutral is connected with 
the mid point of bank of capacitors in dc link. It results in rise of the zero-sequence component of stator currents and 
the third space harmonic of current layer, magnetic flux density and yoke flux. The analysis was performed by the 
method of space vectors and symmetrical components, which guarantees reliable results in case higher space harmonics 
have to be considered. The analysis results in finding the way to reduce additional losses and parasitic torques that arise 
as a consequence of zero- and negative-sequence components in the currents. 
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1 Introduction 
Induction motors are frequently used as drive units in 
driven systems with variable speed. The reason is their 
relatively low price and high reliability. Feeding 
converters, however, are rather liable to rise of failures. 
In case it is necessary to sustain the drive in operation 
till the driven equipment is shut down without damage, 
additional precautions are adopted after the failure of the 
converter. An example of a serious defect is failure of 
one of converter legs or breakdown of one of the stator 
phase windings. One of possible ways to maintain the 
drive in operation is inverter reconfiguration in such a 
way that the damaged leg is disconnected and the stator 
winding neutral is connected with the midpoint of the 
bank of dc-link capacitors (see [1] - [3]). The winding 
fed from the failed converter leg is kept open. The failed 
phase winding can be insulated in the same way. The 
situation after the converter reconfiguration is shown in 
the scheme in Fig. 1. 
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Fig. 1. Simplified scheme of the system 

Connection of the stator neutral with the source of 
the feeding voltage induces the rise of the zero-sequence 
component of stator currents. This component may 
affect properties of the induction motor considerably. In 
the literature common assumption that zero-sequence 
component gives only rise to leakage flux is not 
applicable for the analysis of the induction motor with 
the cage rotor in this case. As it follows from the 
detailed analysis processed in the [4], along with the 
leakage flux, there arises the third space wave of the flux 
in the yoke and, consequently, the third space harmonic 
of the rotor current layer. It implies the rise of additional 
losses and parasitic torques. 

The rise of the third flux harmonic, current layer 
and the torque generated by the third harmonic can be 
proved by simple experiments. These experiments are 
described e.g. in [5] and [6]. 

The present paper deals with the analysis of the 
situation in the machine at the rise of zero-sequence 
component of stator currents under the emergency 
operation with the feeding converter being controlled in 
such a way that the windings that were not disconnected 
are being flowed by so-called injected currents with the 
course defined by switching of individual active 
elements of the converter. Based on this analysis, it is 
possible to define the magnitude and mutual phase shift 
of these currents so that the magnitude of the additional 
losses and parasitic torques can be minimized. 

 
 



2 Mathematical Analysis of System 
Feeding of the induction motor in the emergency 
operation was analysed by the method of symmetrical 
components and space phasors [4]. This method enables 
consideration of the higher space harmonics in quite a 
simple way. Phase quantities (currents, possibly voltage) 
are expressed by means of the symmetrical components 
of the instantaneous values. The symmetrical 
components are proportional to the space phasors. 
According to [4], the magnitude of space phasor of an 
individual harmonic wave (e.g. current layer or yoke 
flux) is proportional to the amplitude of this wave and 
position of this phasor in the complex plane corresponds 
to the position of the maximum. For the three-phase 
stator current system it can be written 
 ( )2

1S SA SB SCk i i i= + +i a a  (1) 

 ( )2
2S SA SB SCk i i i= + +i a a  (2) 

 ( )3S SA SB SCi k i i i= + +  (3) 
The above constant k can be chosen arbitrarily. For this 
paper we chose 1/3. The symbols iSA, iSB and iSC 
represent phase currents and the complex operator a is 

 
2πj
3e=a  (4) 

The components i1S and i2S are mutually complex 
conjugated quantities. These components of 
instantaneous values have to be strictly distinguished 
from the positive-, negative-, and zero- sequence 
components of time phasors of the unsymmetrical 
(unbalanced) three-phase system defined in [7]. The 
positive- and negative-sequence component, constitute 
symmetrical systems of time phasors having different 
magnitudes. In the case of symmetrical three-phase 
current system, for example, the negative- sequence 
component does not arise, while the component i2S 
always develops according to the Eq. (2). The third 
component i3S is an analogy to the zero-sequence 
component of time phasors, but according to its 
definition (3), it is a real quantity. 

As it follows from the detailed analysis in [4], the 
first symmetrical component gives rise to the harmonics 
of the orders ν (the quantity ν is related to number of 
pole pairs p) 
 '1 3kν = +  (5) 
and the second component to the harmonics of the range 
 '2 3kν = +  (6) 
The waves of the orders 
 '3kν =  (7) 
belong to the third component. Quantity k' is a non-
negative integer. From the Eq. (7) the link (connection) 
between the zero-sequence component and the third 
space harmonic is evident. Harmonic of the order ν = 1 
is the basic wave of the group of space waves of orders 

given by Eqs. (5) and (6). Harmonic of the order ν = 3 is 
the basic wave of the group of harmonics belonging to 
the third symmetrical component. This is the reason why 
further in the text space harmonics of the individual 
quantities (current layers, magnetic flux density, yoke 
flux) of the order ν = 1 are denoted as the 1st harmonic 
instead of commonly used term basic harmonic in order 
not to be mistaken with basic harmonics of other groups 
of harmonics. In the case of cage rotor winding having 
generally m phases, the situation is more complicated. In 
this case m symmetrical components arise. Generally 
n-th symmetrical component of rotor currents inR (n is 
integer in the interval 1 to m) can be written in the 
following way  

 ( )( )121 ... m nn
RA m RB m RC m RMi i i i

m
−= + + + +i a a anR  (8) 

where iRA to iRM are phase currents (currents in bars) of 
the rotor and am is 

 
2πj
m

m e=a  (9) 
Particular groups of space harmonics of orders ν 

belong to symmetrical components according to the 
equations 
 '1 mkν = + , '2 mkν = + , ………., 'mkν =  (10) 

The importance of symmetrical components of a 
multi-phase system lies mainly in their relation with 
groups of higher space harmonics according to the 
Eqs. (10). 

Influence of higher space harmonics on currents 
and torque of the machine falls substantially with their 
range. At the considered way of feeding, it is fully 
sufficient for most of currently produced induction 
machines to take just the first and third harmonics, 
which are the basic waves belonging to the first and 
third components of stator currents, into consideration. 
If the number of rotor phases m > 6, then the third 
harmonic is the basic wave of the group of harmonics of 
the orders ν = 3+mk' and belongs to the third 
symmetrical component of rotor currents. 

Mathematical description of induction motor with 
the cage rotor in emergency operation after 
reconfiguration of the feeding converter according to 
Fig.1 and fed by injected currents into the rotor can be 
quite easily derived from the system of differential 
equations holding true for feeding from the voltage 
source. When winding of the stator phase A is 
unplugged and m > 6, then, according to [6], these 
equations are 
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where uSB and uSC  represent phase voltages of the 
feeding windings. Symbols RS, R1R, L1S, L1R and L1h are 
resistance and inductance of stator and rotor and the 
main inductance for the first harmonic. Inductances L1S a 
L1R are defined by the sum of the main inductance and 
the stator and rotor leakage inductances LσS and L1σR 
 1 1S S hL L Lσ= +  (15) 
 1 1 1R S hL L Lσ= +  (16) 

Resistance and rotor leakage inductance are rated 
to the effective number of conductors of one stator phase 
winding for the 1st space harmonic according to  
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where RR, LσR, are resistance and leak inductance of the 
rotor, NS and NR are numbers of conductors of one stator 
and one rotor windings, m denotes number of rotor 
phases and κ1S and κ1R are winding factors of the 1st 
harmonic. 

Under the simplified assumptions commonly used 
in the theory of electric machines inductance L1h can be 
estimated, according to [4], from the relation  

 2 2 0
1 1 2

3
4h S S

DlL N
p

µ
= κ

πδ
 (19) 

where µ0 represents permeability of vacuum, D is the 
stator bore, l is active length of the machine, and δ is 
width of air gap including the Carter's factor. 
Similarly for the third space harmonic is 
 3 3S S hL L Lσ= +  (20) 
 3 3 3R S hL L Lσ= +  (21) 
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where κ3S and κ3R are winding factors for the third 
harmonic and 

 2 2 0
3 3 2

1
6h S S

DlL N
p

µ
= κ

πδ
 (24) 

Symbol ρ represents stator and rotor mutual shift. 
The first and third symmetrical components of rotor 
currents i1R and i3R are rated to the effective number of 
conductors according to 
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1 1
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R R
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i i  (25) 

and 

 3
3 3

33
R R
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κ
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i i  (26) 

Supposing the stator phase windings that were not 
disconnected are flowed by the injected currents, the 
induction motor in the emergency operation is only 
described by Eqs. (13) and (14). 

For further processing these equations were 
introduced in the stator coordinate system and written in 
the form 
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1 1

R h SR
m R m S
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where ωm is mechanical speed. Symbols i1Rλ and i3Rλ 
represent quantities i1RS and i3RS converted into stator 
coordinates 
 1 1

j
R RSe ρ

λ =i i  (29) 
 3

3 3
j

R RS e ρ
λ =i i  (30) 

and 

 m
d
dt
ρω =  (31) 

In order to complete the equations, we have to add 
torque and motion equations. According to [4], torque in 
the air gap is generated by the 1st harmonic  
 1 1 1 16 Reh S RT pL j ∗

λ =  i i  (32) 

and torque of the 3rd harmonic is 
 3 3 3 39 Reh S RT pL j ∗

λ =  i i  (33) 

The resulting torque in the air gap is 
 1 3T T T= +  (34) 
Motion equation can be written in the following way 

 ( )m
l

d p T T
dt J
ω

= +  (35) 

where J is moment of inertia of rotating masses and Tl 
represents load torque. 

Equations (27), (28) and (32) to (35) represent 
mathematical model of the induction machine in 
emergency operation at considered way of feeding. 

At contemporary drive systems in dependence on 
power of the motor, switching frequency is up to about 
15 kHz. At these values of switching frequency, the 
output converter currents have almost sinusoidal 
waveforms. Distortion due to higher time harmonics 



does not have any significant influence on torque in the 
air gap and so it can be neglected mainly in steady-state 
operation. This is the reason why, at analysis of 
emergency operation of the driving system with one 
phase disconnected in steady state, higher time 
harmonics were neglected. 

 
 

3 Steady-State Operation of System after 
Converter Reconfiguration 

Injected stator currents after converter reconfiguration 
can be written as 
 0=SAi  (36) 
 ( )tIi SSB ωcos=  (37) 
 ( )ϕω += tIi SSC cos  (38) 
where IS, ω and φ are amplitude, angular frequency and 
phase shift of currents iSB and iSC. 

The function cos of any angle α can be expressed 
as 

 ( )cos
2

j je eα − α+α =  (39) 

According to this equation, Eqs. (37) and (38) can be 
transformed to 

 
2

j t j t

SB S
e ei I

ω − ω+=  (40) 

 
2

ϕωϕω jtjjtj

SSC
eeeeIi

−−+=  (41) 

Substituting Eqs. (36), (40) and (41) into Eqs. (1) 
and (3) we have after the rearrangement 
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1
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e e e e

π π ϕ ω

π π − ϕ − ω
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
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

i
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 ( ) ( )3
1 1 1
6

j j t j j t
S Si I e e e eϕ ω − ϕ − ω = + + +

 
 (43) 

The first i1S and the third i3S components of stator current 
can be written as 
 1 1 1S SP SN= +i i i  (44) 
 3 3 3S SP SNi = +i i  (45) 
where it was introduced 

 1 1
1
6

j t
SP S PI e ω=i K  (46) 

 1 1
1
6

j t
SN S NI e− ω=i K  (47) 

 3 3
1
6

j t
SP S PI e ω= ΚΚΚΚi  (48) 

 3 3
1
6

j t
SN S NI e− ω=i K  (49) 

The constants K1P, K1N, K3P, and K3N are defined by 
equations 

 ( )2 3 2 3
1 1j j j
P e e eπ π ϕ= +K  (50) 

 ( )2 3 2 3
1 1j j j

N e e eπ π − ϕ= +K  (51) 

 3 1 j
P e ϕ= +K  (52) 

 3 1 j
N e− ϕ= +K  (53) 

The quantity i1SP, which is a part of the first 
symmetrical component, corresponds to the positive-
sequence component of time phasors of stator currents 
given by Eqs. (36) to (38). According to Eq. (46) the 
component i1SP rotates in the positive direction with 
angular frequency ω and as it gives rise to the first space 
harmonic of current layer in the space of the machine. 
The component generates the effective torque. The 
effective torque means such torque which drive in 
positive direction without any pulsating and braking 
components. The component i1SN corresponds to the 
negative-sequence component of time phasors of stator 
currents and according to Eq. (47) it rotates in the 
opposite direction than i1SP and so implicates increase of 
additional losses in stator winding and gives rise to 
braking torque. 

Decomposition of the quantity i3S into two complex 
conjugated quantities i3SP and i3SN is an analogy to the 
decomposition of pulsating field into two complex 
conjugated components rotating in the space in the 
opposite directions. So the zero-sequence component of 
stator currents can be compared to stator current of the 
main winding of a single-phase machine. As zero-
sequence-component and consequently the quantities 
i3SP and i3SN give rise to third space harmonics, number 
of pole pairs of this suppositional single-phase machine 
is triple of number of poles of the investigated three-
phase machine. From the above stated it follows that the 
components i3SP and i3SN also increase additional losses 
in the stator winding. According to Eqs. (46) to (49), 
individual components of stator current are proportional 
to the constants K1P, K1N, K3P, and K3N in the 
magnitude. These constants depend on the phase shift φ 
of stator currents. Therefore, by a convenient choice of 
this angle, magnitude of these components can be 
suitably determined, to reduce additional losses and 
parasitic torques. Courses of rotor currents will be 
obtained by solving Eqs. (27) and (28), e.g. by means of 
the Laplace transformation. Substituting Eqs. (46) 
and (47) into Eq. (44) and Eqs. (48) and (49) into 
Eq. (45) we get 

 1 1 1
1 1
6 6

j t j t
S S P S NI e I eω − ω= +i K K  (54) 

 3 3 3
1 1
6 6

j t j t
S S P S NI e I eω − ω= +i K K  (55) 

Differentiating the equations we have 
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6 6

j t j tS
S P S N

d j I e j I e
dt

ω − ω= ω − ω
i K K  (56) 

 3
3 3

1 1
6 6

j t j tS
S P S N

d j I e j I e
dt

ω − ω= ω − ω
i K K  (57) 

After substitution Eqs. (54) to (57) into Eqs. (27) and 
(28) and rearrangements we can write 
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From the Eq. (58) it is apparent that the 1st component 
of currents i1Rλ can be similarly as the first component of 
stator currents i1S decomposed into two components i1RλP 
and i1RλN  rotating in the space in opposite directions. 
Accordingly, we can decompose i3Rλ into two 
components i3RλP and i3RλN. 

Laplace image of the equation for the component 
i1RλP can be derived from Eq. (58) and supposing zero 
initial currents in the rotor we have 

 ( ) ( )1 1
1

R P R P jλ λ+ =
− ω

I p p AI p B
p

 (60) 

where I1RλP(p) is Laplace image of i1RλP. The quantities 
A and B are 
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1

R
m

R

R j
L

= − ωA  (61) 
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16
S h
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I Lj
L
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Equation (60) can be rearranged into form 

 ( )1
1 1

R P j j jλ = −
− − ω + − − ω − ω

B BI p
A p A A p

 (63) 

convenient for inverse transformation. After the 
transformation we obtain 

 1
t j t

R P e e
j j

− ω
λ = −

− − ω − − ω
AB Bi

A A
 (64) 

The first part of the expression on the right hand 
side of Eq. (64) represents transient component of i1RλP 
and the following part of this expression is steady 
component of i1RλP. As this work deals with analysis of 
emergency operation in the steady state, transient 
components will not be in focus in further text. After 
substitution of A and B in Eq. (64) and after 
rearrangements it is 
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In a similar way, relations 
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can be derived for i1RλN, i3RλP and i3RλN . 
From the above equations it is apparent that in rotor 

winding, as a reaction to the third component (zero-
sequence component) of stator currents, the third 
component of rotor currents arises taking an important 
part in increase of additional losses. Components of 
rotor currents are proportional to the corresponding 
components of stator currents in the magnitude. Hence, 
their magnitude, similarly as magnitude of stator current 
components, can be limited by a convenient choice of 
the angle φ. 

According to Eq. (32), torque generated by the first 
symmetrical components of stator and rotor currents 
consists of the effective torque given by interaction of 
components i1SP and i1RλP 
 1 1 1 16 ReP h SP R PT pL j ∗

λ =  i i  (69) 

and of an adverse component of asynchronous-type 
torque generated by quantities i1SN and i1RλN 
 1 1 1 16 ReN h SN R NT pL j ∗

λ =  i i  (70) 

and of two pulsating components 
 1 1 1 16 RePN h SP R NT pL j ∗

λ =  i i  (71) 

and 
 1 1 1 16 ReNP h SN R PT pL j ∗

λ =  i i  (72) 

The third components of stator and rotor currents 
generate parasitic torque given by Eq. (33). 
Analogically, it can be decomposed into 
 3 3 3 39 ReP h SP R PT pL j ∗

λ =  i i  (73) 

 3 3 3 39 ReN h SN R NT pL j ∗
λ =  i i  (74) 

 3 3 3 39 RePN h SP R NT pL j ∗
λ =  i i  (75) 

 3 3 3 39 ReNP h SN R PT pL j ∗
λ =  i i  (76) 

Individual components of the torque are given by 
product of components of stator and rotor currents. 
Hence, it is possible to control their magnitude and 
course by a suitable choice of the angle φ as well. 

 
 

4 Conclusion 
The paper shows rise of zero-sequence component of 
stator currents as a result of connecting stator-winding 
neutral with the midpoint of the bank of dc-link 



capacitors and disconnecting one stator phase caused by 
failure of feeding converter. From the performed 
analysis of this emergency feeding of an induction 
motor in two phase windings by injected currents 
follows rise of a component of currents in rotor winding 
that corresponds to zero-sequence component of stator 
currents. It is shown that these rotor current components 
together with the zero–sequence component of stator 
currents give rise to the third space harmonic of current 
layer and magnetic flux density along the air gap and to 
the third space harmonic of yoke flux. Further, as a 
result of unbalanced stator feeding, negative-sequence 
components in stator and rotor currents can also arise. 

These components in motor currents imply increase 
in additional losses and rise of unfavourable parasitic 
torques. It is shown, that magnitude of individual current 
components and thus additional losses and parasitic 
torques can be reduced by a convenient choice of the 
phase shift of the first time harmonic of currents of two 
fed stator windings. 
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